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GEMACS E N G I N E E R I N G  MANUA L

A. I NTRODUCT I ON

The function of th is  manua l is to d iscuss the physica l and mathema-
tica l method s used in the GEMACS (General Electromagnetic Model for the
Analysis of Comp lex Systems) code to obtain the results des i red . There
are five basic steps i nvolved in obtaining the observables used to evalu-

r - ate a particular confi guration . These are:

(1) Geometric Modeling

(2) Structure Exc i tation

(3) Interaction Computation

(4) Numerica l Solution

(5) Observable Computation
V 

Section B discusses each of these areas as they pertain to the GEIIACS code.

V 
Section C is a discussion of the BMI (Banded Matrix I t e r a t i o n )  solution

• 
V technique developed as a result of this project. Section D is a summary

of results obta i ned with BMI for various geometries.

~1uch of the information in section B is presented in the AMP

manuals. Much of the AMP discussion is directly applicable since the
• basis formalism and some of the code itself is identica l to the AMP

code. The primary differences are in the geometry and excitation

processes and in the use of the BMI techni que to obtain a solution .

B. GEMACS FWICTIO fJS

When the GEMACS program was fir st structured , very lit t l e  was known of

the solution techni ques to be imp l emented . Therefore , the basic functions

nee~ied to perform a generic electromagnetic analysis were identified .

V The input requirements for each function were identified and this specified

the output requirements of the log i cally preceding function . In order



to assure flexibili ty and modulari ty , the ou tputs of each f unct ion a re

symbol ica l l y  ident i f ied data sets. These data sets , a long w i th  other
parameters are used as inputs to subsequent functions.

Thus , each funct ion w i l l  operate on previously defined data or user 
V

supp l ied inputs to generate another data set for subsequent use .
1. Geometr ic Model i ng

Geometr ic modeling is used to convey structure geometry to the

GEMACS code. Since GEMACS uses the EFIE (Electric Field Integra l Equation),

the actua l structure is represented by a series of wire segments connected

in a way tha t approx i mates the actual surface. In the usua l solution

* technique , the segments are given a number and the number assigned to

• one segment is totally inde pendent of other segment numbers. This is

also true in GEMACS when using the full interaction matrix in the solution ;

however , when using the BMI technique , it becomes important to number

the segments in such a way that segments which are electrically close

have numbers which are also close. This is because , for any given row

or column of the interaction matrix , a segment ’s position is determined

by its number. Thus,a 1 J in teracti ons wi th segment 1 will be in row 1

and col umn 1. Much stud y on numbering has been completed and is surnma-

rized in section C. In order to accommodate the need for specific numbering

sequence , the RN (Renumber) command has been included in the geometry

processor. With this command , the user may enter the model in the most

convenient manner and then specif y the desired numbering sequence. When

reducing the E F IE to a set of simu l taneous linear equations , two assump-

tions are made:

(1) The wire segments are of sufficiently small radii tha t circum-

ferentia ) currents may be i gnored .

(2) The current on any segment may be approx i mated by some function

called the basis or expansion function .

These two assumptions have several implications depending on the structure

being modeled and the expansion function used . Assumption (1) restricts

the wire radius , R , to something less than a wavelength (x). Typical l y,

2
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R < A/ b is quoted as acceptable. If the expansion function is to

represent the actua l curren over the segment , then the segment length ,

L, must , in genera l , also be less t h a n V A .  The basis function used in

GEMACS is the sine + cosi ne + pu lse expansion w i th collo cat ion and i t

has been observed that I. = x/4 i s suff i cien t where the current does not

vary rapidly and L A/to is adequate where rapid variations occur. A

general rule of thumb for modeling structures is that the total area of
the wi re  segments s hould approximate the surface area of the structure.
In addi ti on , for the expansion function used , a ratio L/R~~ 5 has been

found to g ive consistent agreement wi th currents obta ined from analyt ic
so lutions. Using these rules , the number of segments (N) for a given
frequency may be approximatel y determ ined from: V

V 

i~~~ l 
2rR. L. = A

N
V 2ITL. 2

i = 1  5 
= A

N

~~ 22nA = A
i = l  500

~-~-~- A
2 = A

500

N _ 
80 A (Eq. 1)

3
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where A is the surface area to be modeled . With N 800, an area of

approx imately 10 can be represented qu ite accurately. If less confi-
dence in the observables is acceptable , A may be much larger than

V ind i cated . The reader is cautioned that the applicability of these

rules to codes emp l oying other methods is largely unknown at this time .

A cons i sten t method of model i ng has not been es ta b l i s h ed except for the
present code.

Once the structure has been defined to the GEMACS code, several

• operations take place before the next command is executed . The geometry 
V

data are scanned to fi nd all segments connected to each other. Du rin g

this operation , segments wh i ch have iden tical end points are found

F and all but one of these segments are given a segment and tag number of

zero. In this way, segments in planes of symme t ry and on axes of rota-

F tion are allowed . The criterion for segments be i ng connected is that the

end point separat ion is less than the roundoff error of the host com-
puter. This number is internally computed based on the number of bits

used for the mantissa of a floating point number. During this time , any

V segment which term inates on the XY plane is ident i f ied as being connected

to a ground plane if one is subsequently spec i f ied . If no connections

are found , this is also noted for user convenience . Once all of

the junc ti ons are found , a list is constructed which identifies the next

segment connected to ei ther end of each segment. For examp le , if end I
of segments  1 , 3, 5, 20, and 75 are connected , then data ident i f y ing the
next segments would be 3, 5, 20 , 75, and 1 . This forms a circular

linked list identif ying all segments connected to either end of a given

V segment. This information is listed in the geometry output for both end

I and end 2 of each segment. A negative number implies end I of the

identified segment while a positive number identifies end 2. Once all

junctions are identified and the junction linked list constructed , the

geometry data interna l format is changed from end point data to centerpoint

coordinates , segment length , and d i rect ion cos ine format. When used ,
dimensioned geometry data are scaled to wavelength for computational

ease.

10
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2. Structure Excitation

There are two methods of structure exci tation available in the

GEMACS code. These are vo l tage exc i tation for antennas and a wave excita-
- 

- •  tion for scatterers. These types may be superimposed for composite exc i ta-
V tions.

V 
a. Antenna Source Model

The normal deriva t ion of the curren ts on a body i nvolves
wri ting the electric field as

1(x) = Imnc (x) + ~
5(x) (Eq. 2)

where ~ (X) is the tota l electric field at X , ~~~~ (x) is the incident

V electric field , and 1
5
(X) is the electric field due to some vol ume

d istribution of currents. By impos i ng the boundary condition at a

f in ite number of points on the surface of a perfect conductor and speci-
f ying the incident f ie ld , we so lve for the currents induced on the body.

~~ ~~~ = ~ ~~~~~ ÷is

) 
= 0 (Eq . 3)

therefore,

— inc ‘ —S
n x E = —n x E (Eq. Li)

In the thin—wire approx imation , this condition is enforced
on the component of the field in the direction of the wire since the

assumption tha t azimutha l currents are negligible forces the 0 components
V to zero , i.e.,

V 1
inc 

= _
~~ 

- 

~~ (Eq . 5)

V 

5
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where 9. is a unit vector in the direct ion of the wire . This condition

is enforced at the centerpoint of each segment and no information about V

E is known between these points. This is equivalent to throwing all of - 

V

the wires away since wire parameters have no effect on the boundary

cond it ions , but only on the current distribution used to satisf y the 
V

• boundary condition .

Now , the only way to spec ify a boundary point to the code
is via a wire segment and thus an antenna source must be specified as a

wire segment. However , this segment is totally artificial in tha t ~XE
along this segmen t is not zero since V J E .  d2. is the voltage dr iv ing
the antenna. Since the boundary condition is only sa t i s f ied  at the

V 
- 

midpoin t and the structure of the exc i tation field is of second order , a

uniform exc i tation gives reasonably good results as long as the exc i ted

segment l ength is much less than A. Since the tota l field at the midpoint

has been spe c i f i ed , equation 2 can be used by again invoking the thin-

wire approximation and taking only the tangential field.

= ~~(1inc ~~1
s

ant
or 

~ .(~
inc 

- lant)= ~~ 
. ~S (Eq . 6)

with E = 0 at those points not driven as antenna sources .
ant

The solution of equation 6 is a set of currents at the

midpoints of each segment and the antenna input admittance can be approx i-

mated by:

• 
~~~~~ (Eq. 7)

The shortcom i ngs of this type of model are presented in

the AIIP Eng i neering Manual and its references (reference 16) .

6
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b. Field Exc i tation

The Incident electric field (i) on a structure may be
ei ther a polarized or nonpolarized field from a plane or spherica l wave.

Multiple wave exc i tations may be comb i ned in any order desired .

In general , the f ield at the observa t ion poi nt r i s given
by

t(r) = T1 e
’ + E~ e

jk
r. 1 (Eq. 8)

• where !
I 

is the source or direct illumination field and E
R 

is the reflec-
* ted field. If there is no ground plane , ER 

= 0. There are two differ-

ences between a spherica l and plane wave. The spherica l wave has a h R

amplitude dependence and the wave vector k is always oriented in the

direc tion of the field point from the source point. For a plane wave ,

the amplitude and k are constant.

V 
In general , the inciden t or sou rce f ie ld  is :

E + JEP (Eq. 9)

where EP is the pc~~ - ~at io~ component if present. EP is determ ined
from the vector relationship E x  ~~~~~= ~ and ECC = I where ECC is the
user supplied eccentricity. [fl

The ref l ected field is given by

E R R!l F 11 + R 11 E 11 
- R~ ~~ (Eq . 10)

where
R 11 is t he in— plane ref lect ion coeff icient

R1 is the out—of—plane ref lect ion coef f ic ient

is the in—plane tangent ial component

is the in—plane norma l component V

E1 is the out-of—plane component

7
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Let p be a uni t vector norma l to the plane of incidence . Then , with k.
f rom sou rce to specu l a r  po i n t and k

r from specular point to the field

• point , we have

p = k. X kr (unit vector ito plane of incidence)

E =  ill + (Eq . 1 1 )

• 
E~~~~~ ( E . p ) p

+ JEP ,)~ + k(E + JEP~ )] 
[_k I + k j

V - (k 2 
~~ k 2

~ y x
x

(Eq . 12)

E 11 = (Eq. 13)

= 

~~ll 
• Z) Z (Eq . 14)

E 11 = - E
1~ (Eq. 15)

The ref lect ion coeff ic ients R 11 and R 1 are the mod i f ied

Fresnel coefficients. This method is discussed at some length in the

AMP Engineering Manual (reference 16) . Portions of the manual are repro-

duced as appendix A. The reflection coefficients are: V

V F
~. —sin 0cos ~3 — E (Eq. 16) V

R _ _ _ _ _ _11 
~~~~ ~ +~~/

‘LE 
S~~ fl

8 
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= ~~~~~~~~~~~~~~ (Eq. 17)

COS 0 + •
~
1CE —sin 0

~ / j~~~\
V e = J. (I - , (Eq . 113 )

E c0 \, ~~l)

where 0 is the angle of incidence measured from ; and and 0
1 
are the

dielectric constant and conductivity of the ground plane. The free space

permittivity is

• 3. In terac t ion Computat ion
The i nterac t ion or structure matrix used i n the GEMACS code i s

formall y iden tica l to that found in the AMP code. Minor changes in the

data structure have been made; however, g iven identica l geometries , one

obtains identica l elements in the structure matrix. The derivation 
V

i nvolved in obtaining the elements of the structure matrix is presented

in chapter II of the AMP Engineering Manual portions of which are repro-

* duced here with equation numbers changed to be consistent with numbering

in this manual.

a. Integra l Equation Formulation

The elec tric field ldue to a volume current distribu tion

~ is  w r i tten by means of the Gre en ’ s dyadic as

= i 
~~c ~ 

(j) • 
~~~ ~~~~~ 

~~ 
dV (Eq. 19) V

where and r a re the observa t ion and sou rce poin ts , respectively, and

the Green ’s dyadic is exp ress ed in the usual notat ion as

G (
~, ~

) = - (l/4ir) [I + (1/k 2) vv J g

where
g = exp(-jk i•

~ - i I )  / k -
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and I is the unit second-rank tensor. The suppressed time variation

is exp (jwt) with w the radian frequency. The plane wave propagation

constan t is k, and is related to c~ and the permitt ivity and per-
V meability of free space, res pect ively , and ta by

k t aJ~~~~~

Where the current d istr ibut ion is limited to the surfaces

of a perfec t ly  conduc t ing body, equation 19 becomes

1 (~
) = ff Jw~~ 

~~ 
(7) • ~ 

(
~, ~~

) dA (Eq. 20)

V with J the surface current density . If this surface current is induced

by an incide nt electric field 11
, then an integra l equation for the

unknown surface cu rrent J
5 

can be obtained from equation 20 and the
boundary cond it ion that

n(r ) x [1
5 

~
) + Il (

~)] = (Eq. 21)

where n (
~

) i s  the u n i t normal vector at r and is  the sca ttered
fi eld due to the secondary curren t di stribution . Equating E of

equation 21 with E of equation 20 yields

~~‘ x 11 
~~ = n x f f  ~~~ J (

~
) . 

~ 
(
~, ~~

) dA
S 

(Eq. 22)

V For the thin—wire approx i mation , limiting atten tion to

circular cross-section bodies of diameters small compared with the

wavelength , the azimuthal current may be neg l ected , and equation 22

becomes

10
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~1~

‘~ x 1~ (~c~ 
= ~ x ~ jJ ~iw~ j  (

~) + 
k~ 

] g (
~, ~~

)

- •  

(Eq. 23)

where S is the uni t tangent vec tor at 7 poi nt ing in the direction of the

current. A scalar integral equation for the current is obtained by

taking the dot product of equation 23 with the unit tangen t vector

at t~~ observa tion point as

~~~~ (~
) = i~~ ~~ ~

) [ .  
~~ 

+ ~~~ ~) (~ ~
) 
~~2] 

g(F, ~
) dA 

V

(Eq . 24)

If the assumpt ion is now made tha t J5 is independent of
the azimutha l variable , equation 24 can be written

= 

~~ J ja~ ii~ J
~ ~~ 

~ 
o 

— 

~~ 
g (~ , F~) d4ds

* (Eq. 25)

where a is the wire radius and the s integration is over the entire
length of wire L. A fina l approximation is that the current may be
rea l i s t i c a l l y  represented as a fi lament of strength I~ (s) = 2~a J

5 
(s)

f lowing on the w ire axis whil e the f ie ld is evaluated on the w i re
surface , a l low ing equation 25 to be w r i t t en

~~~~~~~~~ 1
I&o

) = (-j wj i /Liur) I Cs ) [S .  ~~ 
- 

~~ ~s ]~~~~’ 
i )

(Eq. 26)
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where 
~~ 

- is now mea su red from the wir e axis , or source point , to 
V

the observa t ion poi nt on the sur face , wh ich can thus never be closer
than the wire radius a. By considering the current as a tubular sheet

centered on the wir e axis whi l e evalua ting the elec tr i c f i eld at the
wire axis , one can resolve the ambiguity in the azimuth i nvo lved . The

form of equation 26 is not changed using this convention , but the

in terpretation of the tangential field eva l uation is simplified when

nonparallel , nonp lanar wires are considered .
The thin-w i re approximation which l eads from the electric

field in tegra l for a surface current distribution to equation 26

i nvolves the assumption that the wire radius a << A so that: (1) azimu-

tha l current flow around the wire may be neg l ected ; (2) the long i tudina l

curr ent is independent of azi muth and may be rep rese nted as a f i l ament
• alo ng the wire axis; and (3) that the surface integration can be replaced

by a line integration along the wire at a radial distance a
n 
so tha t the

minimum source- to-observation point distance is a
n 

thus avoiding the
sing u lari ty in the ker nel of the integ ral wh ich would occur at r =

This thin-wire approximation has been applied to radiation

* 
and scattering prob l ems with a g reat dea l of success. Until fairly

recently, for examp le , l i near ant enna theory was almo s t exc l u s i v e l y

restricted to the thin-wire approach; the same observation applied to

scattering from finite length cy linders. At the same time , the antenna

and sca tte r i ng solu t ions were l a r ge l y  conf i ned to d i pol es on the order

of a few wavelengths l ong . This results , for the most part , f rom the
approx i mate analytic approaches required due to the difficulty i nvolved

in obtaining a numerical solution of the integral equation . While Wu

(1960) and Chen (1968) extended the analytic methods developed by Hallen

(1938) and King (1956) to antenna and scatterers without this length

restriction , their results are quite complicated in form and in addition

have not been subjected to extensive experimental comparison.

12
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The reason for concentrat ion on anal ytic solutions to the V

integra l equation , until the past few years , was the lack of sufficien tl y V

powerful computers to provide the capability to obtain a completely

V numerica l solution . With the present development of both high-speed V

compute rs and advanced methods of numer i cal analysis  thi s is no longer

the case: significant progress has been made in extend i ng accurate

numerica l sol ut ions to more comp lex geometries . In the fol lowing se cti on ,
the method of solution wfll be outlined for the electromagnetic properties

of structures to which the thin-wire integra l equation is applicable.

b. Reduction to a Linea r System (Collocation)

* 

A numerica l sol ut ion to an integ ral equat ion may pe rhaps 
V

be best undertaken using the method of moments. This is a well-founded

mathematica l technique for finding the unknown by forcing the integra l

V equati on to be sa t isf ied in some prescrib ed fashion ove r the range of
the integral operator. GEMACS is based on the thin-wire elect ric field

integ ra l equation .

Equation 26 may be written symbolically as:

V 

Z(f) = g (Eq. 27)

fol low i ng Harri ngton ’ s (1968) notation. The solution of equation 26

(or of equation 27) is obtained by the method of moments. An intu itive

approach to solving equation 27 for the unknown function f is to set f

equal to a constant f. wi thin N subintervals of the domain oft , and to

require equation 27 to be satisfied at N points over the range of S~,

obtaining N equations in the f .  unknowns. This is a spec ia l ized applica-
tion of the method of moments which is more generally written as follows.

Let

f = E a f

wi th the basis function f defined in the domain of fso that equation 
V

n
27 may be written

13
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Ean e 
~~~ 

= g (Eq. 28) V

Then , wi th the set of weighting f unc ti ons w , defined in the range of

the inner product denoted by < > is formed as

Ea 

<~
‘m ’ 

~~ 

= ~~ g
\

; 
(Eq. 29) 

V

V where m = 1 ,2,3 .... Equation 29 can be writt en in matrix form as

[ G]  [a] = [S
m
]

where

G = 
<w~~ 

e

and

= 

V

and the matrix G is referred to as the structure matrix. If the V

inverse of Gmn exists , then the an ca n be found,a nd th us, the function f,

wh i ch is the des i red sol uti on , for any specified source function

The proper cho i ce of weight functions and basis functions ,

as well as the subsectioning of the domain of~~ 
, is not an obv i ous one.

Although there is some l eeway in the matter , caref u l cons i de ra ti on of
the physics of the prob l em and the nature of the expected solution wi l l

show that some representations for the f will be more efficient than
n V

others in terms of computer time and accuracy . Constant , linear , quadra - V

tic , trigonometric ,and Fou r ie r ser ie s have a l l  been used for  th i s ro l e.

The weig hting functions have generally been more restricte d in cho i ce

than f . Th e spec i a l  case w = f i s r e fe r r ed  to as Gal er k i n ’ s method .
n n n

110
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More of ten , the wei ghts are ó-functions , a method referred to as
co l lo ca t ion , so that the inner product equation 29 mere l y becomes

the sequence of va l ues Z 
~~n~m 

and g .  These are , respectivel ,,
the tangential electric fields due to current segment n at observa-

V 
tion point m and the tange ntial incident electric fiel d at observa-

tion point m . V

c. Current Expansion

The GEMACS program employs the collocation method with

constant , sine and cosine terms for the f segment or current function ,
V i.e.,

N N

I(s) = U.(s)[A. + B.  sin k(s—s.) + C.cos k (s—s.)] =~~~~~ U.(s)i. (s)
V 

j = l  j = l

(Eq. 31)

V 
where U

i
(s) is 1 when s is on segment j and zero o t h e r w i s e .  Equa t ion

31 appears disadvantageous because three constants are required to

specif y the current on each segment , so tha t apparentl y 3N linea r equa-

ti ons need be solv ed; however , it is not necessary to emp l oy the integral

equation itself to find the extra unknowns introduced by the sinusoidal

expansion . Two of the three constants for each segment may be obtained

by requiring the current in adjacent segments to satis f y some speci fied

mutual conditions. In the GEMACS thin-wire program , the extrapolated

current f rom a given segment is forced to match the center current

V values in two adjacent segments to satisfy the required condition for

two-wire junctions as follows .

V Let the current on segment j be expressed as

I .(s) = A. + B . s in k(s—s.) + C. cos k (s—s.)
J J J J J J

(Eq. 32)
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V wi th s~ the midpoint coord i nate (Yeh and Mei , 1967). Also , let segment

j be connected to segments j-l and j+l at its minus and plus reference

ends respectively with the reference directions on all three segments

V the same. Evaluation of I . at s., s. , and s. res u lts in
j j j— l

A. + C. = I.
J J J V

A. + B . s. . + C. c . . = I . (Eq. 33)
• j j j— l ,j j j—l ,j j—l

A . + B . s. . + C . c. = 1
* J J J+l ,J J J+l ,J j+l

where d~ is the length of the ~th segment and

S 

= 

sin 

[ka~+1 + d.)/2]

cos

c j+l , j

Solution for A ., B ., and C. in terms of I . , I., and I . provides an
J J J i - i  j  J+ l

equation of the form

l.(s ’) = x .(s’)I . 1 + V .(s’) I . + Z. (~
‘
~

(Eq. 34)

• whe re X., Y., Z. contain the coefficients A., B., C. . The system of
J J J J J J

equations which results from the collocation solution to the integral

equation is thus seen to invo l ve as unknowns the N current samples at

the centers of the N segments into which the structure is divided .

,The extension of the interpolation procedure to rnuTt ip l e

junctions is straight forward. Consider the case where segment j is

connected to m segments numbered j + 1 , j + m at its plus end and

16

______________— ~~~~ - V ~~~~~~~~~~~~~~~~~~ V ~~~~V_ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~ _ - - V V V~ — ~V V_ V V 
V_Is

the single segment j-l at its minus end . Then only the equation repre-
V senting equation 32 evaluated at 

~
•+l is modified and becomes

j+rn j+m

V 

V~~ A~ + ~~~ (B~ s~~~ + C~ c~~~
) = I~ (E q. 35)

I i=j+l i=j+l

V which comes from interpolating I
i 

to the midpoints of the m connected

wires where it is equated to the average midpoint value. A solution for

the A., B . and C. in terms of the midpoint currents I . , I .
j  j  j j-l j+l

- ‘j+m follows as before. A multiple junction at the minus end of the

segment is similarly treated .

The sinsusoidal current expansion appears to make the

system of equations resulting from collocation somewhat more involved .
V But the required computer time is not significantly increased when

compared with the same number of current unknowns without using the

sinu soi (3l expansion. Other current expansion functions—linea r , quadra-

tic , Fourier series-could be used in place of’ the constant-sine-cosine

expression , but th is par t icu lar  expansion has a number of additiona l

advantages over the other possibilities mentioned . For instance , a

V 
solution for the current to a specified accuracy for a half- wave dipole

scatterer and antenna requires the fewest current segments using the

sinusoidal expansion (Neutreuther , et a l., 1968). This advantage would

be expected to carry over to more complex geometries. Second , the

solution wi l l  more accu rately exhibit the required dependence on wi re

radius (Andreason , 1968) because the constant current term produces

infinite tangential electric field on the current a. is , as opposed to

the sine and cosine terms which do not.

V Th i rd , the parallel and perpendicular electric field

V components (due to the sine and cosine current terms) and the tangential

field components (due to constant current terms) may be analyticall y

evaluated . This eliminates the necessity for extens ive numerical

integration to eva l uate all the elements in the coeffic ient matrix

17 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- ----V - 
V V

~~ I

I

I
Gmn~ 

Only the perpend icular elec tric f i e ld exc ited by the constant
current terms requ ires numerica l integration and this is handled by
appl y ing the Romberg variabl e-interva l width technique to the difference

V 

integ rand . This is discus sed in the appendix of the AMP Eng i neering

Manual.

d. Calculation of the Structure Matrix V

The for m of the ma tr i x elements which resu lt f rom app ly ing

V the method of collocation to equation 26 is considered in the following

discussion. Each entry G.. in the structure matrix represents the

tangential electric field at observation point i on the structure produced
V by unit current flowing on segment j. The boundary condition on the

tangential electric field is enforced at each observation point. The
collocation method of solving the integral equation is thus basicall y

one of calculating electric field components at specific points due to

the current induced on the structure.

V The th in-wire approximation involves the exp l i c it  assump-

tion that the effects of azimutha l currents can be neg lected in compari-

son with those of axially directed currents and that , in addition , the
V 

cylindrica l tube of axial current has no azimutha l dependence . The
I for me r assu mpti on al lows one to consid er on ly one curre nt component

rather than two, while the latter prov i des partial justification for

reducing the surface integra l to a line integ ral . It may be deduced

from an examination of equations 25 and 26, however , that even where

J is independent of 4,~ the kernel of the integration equation depends in
V general upon both ~ and s. However , the integrand is independent of ~

in the special case where the observation point is located on the axis

of a linear tube of current , and the ~ integration of equation 25 may
V be replaced witho~ t approx i mation by the factor 2ir .

V Consequently, the observation points are located where

the tangential e lect r ic  f i e l d  is to be calculated , on the axis rather

than on the surface of each wire segment. The ~ integration in equation

25 is thus exact for the self-field as well as the mutua l fields for

V 18
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a ll current segments having a coinnion axis. In addit ion , the possib le
ambiguity i nvolved in evaluating the incident field over a 2-ti vari ation

in 4 on the w i re surface is resolved . As a f in al po i nt , the observation
point is always at least as far as the wire radius from the source

point.

When the mutua l fields of nonaxiall y aligned current

segments are required , the ~ integration is not so simp l y performed .

And , if no approximation were used , the c~ integration would require

numerica l evaluation. The most obv i ous approach is to consider the

tubular current source to approximate a linea r filament on the wire

axis , a procedure which again replaces the c~ integration by a 2ir factor.

Unfortunatel y, this approx i mation eliminates the influence of the wire

radius from all mutual field terms on the phase change and geometrica l

attenuation of the field caused by the separation of the source and

observation points.

An alternative to the above method is replacement of the
V current tube by a current filament which is not located on the wire axis

* 

but is displaced in distance from it by the wire radius. The directio n

of displacement is perpendicular to the plane of the wire axis and the

line joining the observation point and wire axis midpoint (the observa-

tion point for the self term field). The geometry of this method is

shown in figure 1. The improved agreement obtained between theory and

experiment for a 16-sided regular polygon backscatter cross section

demonstrates that this approach is more realistic.
V 

To summarize briefly, the surface integral is reduced to

a line integral by neglecting azimutha l 1 currents and azimutha l variation

of the axial current. Self-field terms are ca l culated with the observa-

tion point on the axis of a cy lindrica l current tube , while mutual field

terms are calculated at the same observation point with the current
V 

V 

represented as a filament displaced from the wire axis by the wire

rad i us .

1Taken here to mean the direction measured along the intersection of
the current tube surface with a pl ane perpendicular to the axis of

V the curren t tube.

19
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IcZ~— — OBSERVATION POINT
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~~~ ASSUMED POSITION

• OF SOURCE FILAMENI

SOURCE ELEMENT

(a) Thin wire current approximation

z OBSERVATION POINT

A ~

SOURCE SEGMENT —
~~~~

- A/2

(h) Geometric parameters for field evaluation

Fi gure 1 . Geometry of Curren t Filament
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The integral equation 26 can now be wri tten in the
form

V 

E ’ = (jwp /4n)~~~ 
~ [~~. ~n 

- 

~ ~s
a
as ] g(r , r) I (s) ds

V n=l
n (Eq. 36)

where AS denotes the l ength of segment n , E~ is the tangential compo-
V nen t of the incident electric field at the m th segment , and

V 

— 

exp [-ik ~~~~ + (s - s)2]
g(r , r) — 

_______________

Ifl ~Eq . 37
12 + (S -

It should be noted that the integration over L has been reduced to a

summation of N separate straight-wire segment integ rals. It is conve-
I nient to rewrite equation 36 in terms of cylindrical coordinates

referred to the wire segment be i ng integrated . Then one obtains

E
1 

= (j 0/4~~~~ 

~~n 

[ 

z
n . 5

m * ~Z a s  
g ( r ~~~ , z ) I n (Zn) dZn

V 

(Eq. 33)
V 

where

V g(r , z) = exp (_ ikr
mn
)/r

mn (Eq. 39)

r = (Eq . 100)

- 21 
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an is the radius of wire segment n , and p and z n 
are the rad i al and

z-coord i nates of the observation point at the center of segment m referred

to the midpoint of segment n , as shown in figure 1.

V 
e. Impedance Load i ng

The discussion has thus far been limited to the case of a 
V

V perfectly conducting scatterer. The approach may be generalized to

allow for l oad i ng of the structure by introducing a vol tage drop term in

the integra l equation . If the impedance loading per unit length on
V segment m is Z , then equation 38 becomes

- I Z = same right-hand side (Eq. 41)m m m

f. Curren t Solut ion

Havi ng eva l uated the mutual impedance elements (the

structure matrix) , equation 26 can be w r i t t e n  in m a t ri x  notat ion as

G. .  I. = -E~ i = 1 , 2, ... N (Eq. 42) 
V

V where G is the structure matrix , I . is the unknown current at w i rej  V

V segmen t j ,  and E. is the incident tangential field at segment i .

Equation 42 is solved in the form V

F N

= —~~~~G.. 
— l 

E~ (Eq. 4 3)
j=l

V The operation implied by this equation may be accomplished via inversion , 
V

factorization of the C matrix , or by itera t ion . In the col lo ca t ion

solution of the wire-antenna problem used in the GEMACS program for arbitrary
thin-wire structures ,the solution of equation 43 for the current w i l l

represent the major portion of computer program execution time for

complex structures containing a large number of segments. It is , therefore ,

of the utmost i mportance to have efficient solution procedures available

for this tvoe of structure. V
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4. Solution Process Implementation

The basic sol ut ion process involves decompos ing the structure 
V

matrix [C] (or tha t portion of it extracted for a BMI solution) , per-

form i ng forward elimination and back substitution , and perform i ng matrix
- •  

multiplication . The performance of these functions is straightforward

when • . 11 of the data reside in core. However , G EJIACS was des i gned to

han d~~;~ large prob l ems and thus core resident routines are not very

* eff i c ient. The primary function is tha t of decomposing a matrix into an

upper and l ower triangular matrix when none of the matrices wil l  fit in

core storaqe. The algorithm employed in GE I iACS is specifically tailored to

the data storage method for matrices . All matrices are stored by column ,

* that is , each col umn requ i res a separate read and write . For this

d i sc ussio n , a col umn will be referred to as a record. whi l e this is

obv iously not the best I/O scheme , it is l ikely to be f ai rl y good since
V larger problems t yp i ca l l y  require several hundred elements and each

record wi ll contain twice that number of entries since the matrix is

complex . Therefore , the system buffer for I/O w i l l  be quite adequatel y

used with a sing le record . Enlar ging the buffers usually increases the

core size and will not significantly reduce run time . In addit ion , all

I/O is  i n  ANS I FORTRAN IV for compatibility with a l a r ge num ber of

machines.

The function of the solution processor is to find the solution

I to the set of simultaneous linea r equations:

GI = V (Eq. 1010)

The method employed is known as l ower/upper triangular decomposition
V 

which is a variant of Gaussian elimination . The matrix C is decomposed

in to lowe r (L) and upper (U) triangular matrices such that

6 =  L U

23
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then

G I = V

LUI V
—l• U I = L  V Y

and

I = U 1 Y

Note that the i nverses of L and U are never found and the notation is V

used to show the solution logic only. Also , the inverse of C is not

• found unless explicitly requested . V

When decompos ing a matrix , one proceeds down the d iagona l
• modif ying all elements below and to the right of the diagona l by opera-
• tions performed upon elements of the diagonal row and column. Thus ,
V

. 
once the ~th diagona l element has been used , all column elements be low

and row elements to the right of the diagonal w i l l  not be referenc ed
aga in. These are the elements of the l ower and upper triangular matrices V

and may be wri tten out immediately to their respective files. Likewise ,

the elements of the square submatrix remaining may be written to a 
V

V periphe ra l file and when al l  of the elemen ts have been p rocessed , al l
f uture elemen ts reside in this square subma trix which is smal ler by one
row and column than the source. This procedure is repeated N-I times

where N is the dimension of the origina l ma tr i x .  I n th i s  way , the point

is reached where the ent ir e remaini ng subma trix w i l l  f i t in core and may
be decomposed using norma l codes. This procedure is illustrated in

fi gure 2 for the first three diagonal elements of a 10 x 70 matrix.

Note that even though the elements of the upper triangular

mat r ix are row e lements , they will be stored as column elements . This

w i l l  be compensated for during the e l iminat ion process. 
V

The types of decomposition encountered are referred to as row

or column decomposit ion depend ing on the sequence of operations performed .

V GEMACS employs col umn decomposition and diagonal p ivot i ng ; that is , no row

or column interchanges take place. The lack of interchang i ng rows or
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— ~ ~~~~~COLUMIl 1 OF UPPER V

— ,9  X 9 SUBMA TR IX FOR NEXT ROUNDn — l  —

COLUMN 1 —
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• N = 9

— ~ ~~~~COLUMN 2 OF UPPER

‘ 8  x 3 SUB~-iATR IX FOR NEXT ROUND
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OF LOWER~~~~~ 

- V

N = 8

— ______________ C O L U M N  3 OF UPPER

,—7 X 7 SUBMATR IX FOR NEXT ROUND

COLUMN 3
OF LOWER 

—

Fi gure 2. Illu stration of Matrix Reduction During Decomposition
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columns may lead to prob lems for i l l -condit ioned matr ices;  however , the
matrices generated by GEtIACS do not display this characteristic except

possibly nea r high-Q resonances which are unikely on large structures .

The matrix decomposition is monitored to detect the occurrence of

instability or errors due to round-off accumulation . Such ind i cation

did not occur during the extensive development work on the BMI scheme

for a wide variety of shapes. The i ncorporation of a pivoting capability
• in GEHACS is possible if a need is demonstrated .

The algorithm for GEMACS decompo sition at the J~ 1~ round is:

G(J ,I) = G(J ,I)/G(J ,J) for I = J+l , N (Eq. ~~~ V

G(K ,I) = G(K ,I) - 
G(J ,i) ;~G(K ,J) fo r K = J+l , N (Eq. 46)

Note that the second term in equation 46 contains the con-

stant G(J ,I)/G (J,J) for I and J fixed . Then as K varies , contiguous

elements of the 1 th col umn are modified . In the FORTRAN code, this

permits simple subscripts to be used with incremental steps and alleviates

the need for determining the storage address of the elements for each 
V

value of I . This results in a more efficient code which executes much

faster than codes which perform decomposition by rows. Also , th i s

met hod makes it computationally simpler to decompose rea l or complex , V

banded or nonbanded matrices using the same subroutine.

The resu l t of the decomposi t ion is lower and upper tria ngula r

matrices written by record to two separate peripheral files. The matrices V

cou ld have been comb ined , however, they are never both needed simultane-

ousl y. Therefore , more of each w i ll f it i nto the ava i lable core usin g

this method . Normally one of the matrices will  have ones (1) on the

V diagona l while the other will have the diagona l elements as modified

by decomposition. The GEMACS code places the diaqona l elements on both 
V

matrices since , if the original matrix was transposed (as in the case

26 V
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for the GEMACS structure matrix) the role of the l ower and upper matrices

is interchanged . If I and U are the l ower and upper matrices result ing

from decomposi t ion of 6 , then

C = LU (Eq. 1+7)

= (Lu )T

V 

= U
T

L
T

V 

6T = LT UT (Eq. 48)

where LI and UT are the lower and upper triangular matrices obtained

from transposi ng Ii and L. Therefore , the role has reversed and the

logic has been i ncorporated in the GEMACS code to always assume the lower

triangular matrix has unit diagonal elements.

Using the algorithm described above , GEMACS needs room for onl’~
three columns of the matrix in core in order to perform the decomposition

(2 col umns for decompositon and 1 column to accumulate the e lemen ts  of the

uppe r triangular matrix) . The l ower matrix is stored on a scratch file. V

Once the matrix has been decomposed , the data to be used in

the l ower matrix are recovered by column until the available core s toraqe V

is used . Forward elimination is the process of solving the system

LV = V (Eq. L~9)

V where V is the orig inal ri ght-hand side and V is orig inall y the null V

vector. Storage for V is not actually requ i red since V may be overwritten .

The elements of V are modified according to

v . = v. - 
~~ 

t . .  v. (Eq. 50)

j=l
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where 2 .. is an elemen t of the l ower trian gular matrix. It is seen that

the element v. depends on ly on the elements v. which precede it , thus the 
V

name, forward elimination. Therefore , v. may be accumulated for those

V V rows of V for which the columns of I are in core. Note that the elements

of L were written out as a col umn even if C is a transposed matrix since 
V

• the rows of U become the col umns of L.

Once V is found , the system that remains is

UI = V (Eq. 51)

where U is the upper triangular matrix w i th  1 row per record , I is the

- 
solu t ion vector,and V is L 1 V or a modified right-hand side. Since U is

a lower tr iangular matr ix , one star ts at the bottom and works back up
• the right hand side. The elements of I again overwrite V or V and are

given by

v. = (vi — ± u.. ~~~~~~ (Eq. 52)

V j=i +l

where u .. is an element of the upper triangular matrix. Since the last

elements of U are needed first , the GEMACS code wi l l  determ ine how many

rows wi l l  fit and fetch the data in the proper sequence. Since ANSI

FORTRAN does not support random access I/O , this can be a time consuming

and expensive process for very large matrices. This expense , as well as V

V the expense of decomposition , is considerably reduced for banded matrices ,

V however , when using BMI , the solution process is repeated for each itera-

• t i on . A detailed discussion of BMI is presented in section D.

V Implicit in using BMI is the matr ix multiplication invo l ved in

finding the RHS (right-hand side) at each iteration , i , prior to the

solut on of equati on 49.

RH S~ = V - (GL + GU) I i-l 
(Eq. 53)
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V 

The elements of equation 53 are matrices where CL and Gi l are those parts

of the structure matrix not included in the band . V is the exc i tation

V and l i l  is the last solution obtained . Remembering that we have core

storage for at least three columns of the structure matrix , ~~
V V 

and one col umn of G wil l  fit in core . The elements of CL and CU remain

imbedded in G. The elements of RHS for a bandwidth of M are (where i

V and j are subscripts of the matrices):

RHS
1 

= -
. ~~~ (GL~ . + CU 1.) I

i (Eq. 53(a))
• j < i f l l

V j > i + m
and are accumulated as the blocks C are read into core. The same tech-

V ni que of partial sum accumulation may be used to multi ply matrices

togethe r which wil l  not fit into core , and it is even more efficien t than

V conven t ion a l methods wh en they do fit ,since again , the innermos t FORTRAN

DO loops reference continuous data ,and thus, art optimizing compiler wil l

not generate the indexing l ocations code.

In discussing how to handle large matrices , the idea of very

large core machines usuall y comes up. While such machines exist , few

can directly access very large arrays . For instance , while the CDC 7600

V 
may have I m i l l i o n  words of LCM (Large Core Memory), only 131 ,000 words

may be addressed in any single array. This is due to the size of the

address word used by the comp l ier in indexing computations. It is

hig hly unlike l y V
~hat anyone is going to be wil l in g to dedicate more

V than 18 bit words to address storage ,and thus , 13 1 ,000 is the lim i t .

Without assembl y language routines , this necessitates the use of out—of--

core techniques and GE~ACS has been s p e c i f i c a l l y desi gned for this w i t h i n
V the constraints imposed by ANSI FORTRAN IV .

5. Observab les Computation

The GEMACS code wi l l  compute the near and far electric field V

upon request.  These quantities are computed exactly as in the AMP code.

Portions of the AMP Systems Manual describ ing the AMP subroutines EFLD

and FFLD are reproduced here. The GEMACS code does not include the ground

wave capability present in the AMP code.
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The far e lectr ic  f ie ld  due to line currents can be wr i t t en

~ (7) = jwp 
[(k 

(k. ~~e
Jk
~~~

’ T(7t) di)) - e~~~ 
r ’ 1(7’ ) d~

] 

V

(Eq. 54) V

where r is the posit ion vector of the observa t ion poin t , r ’ is the pos i-

ti on vector of the source poi nt , i~ is i n the direc t ion of propagat ion
w it h a magni tude of 2-ri/A. Specialized to strai gh t w i r e segmen ts as used V

• in the GEMACS formula tion

~ fl = 
0 e~~~~ ~~~ e~~~ 

R. [ k (
~ ~~ ; ] 2ir

i=l 
(Eq. 55)

where i~ is free space impedance , 1k. is the posit ion vector of the
center of the ~

th segment and
S/ 2

= 
~~~. c e~

2
~~

’<
~ 

u.)t I.(t) V
I dt

—(S/2)

where u . = cos ci. cos 8. ,~ + cos ci. s in  8. y + sin ci. z which is the
I I 

th I I V
reference direct ion of the I segment wi th the angles defi ned as shown

below , tu. = r ’/ A  -R ./A , and s is  the segment length in wavelengths.

/~~~~~~~
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Wi th
I . ( t ) / A  = A. + B. sin 2-itt + C. cos 2-itt V

I I I I

i ntegration of Q. yields 
V

— I sin ,rw. s j’ sin ¶ (l + w.)s sin ir(l — w.)s
= u~ L” j -

~
i.w

~~

1 
+ J B. (

~ 2~ (l+ w.) 2i (l - w i

/sin -rr ( 1 + w.)s sin rr (l - w-i sVl
+ C~ (~ 2-it (1 + w.) 

+ 2-rr(l - w .) (Eq . 56)

where w. = - • (Eq. 57)

No te, the term k (ks~~ .) in equation 55 is completely radial and

• cance ls the radial component of Q.. This term is ignored in G EMACS s i n c e

the desired transverse components w i l l  be computed by a dot product.
Thus for program use only and with the understand i ng that only transverse

components wifl be used , we wri te

= -j .~2. e7~ :~: 
e~~ ~~ 2-rr~ . (Eq. 58)

G round effects are included by means of an image and the

appropriate reflection coefficients. The z component of the segment-’
V reference d irection vector u changes si gn for the image as shown

V 

Ray

Reflected Roy

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
(ER)

~~~~ V
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Using this convent ion , the ref lec ted f ie ld  can be wr i t ten in terms
of the i mage field (E’) as

= R~~ (E 1 . p) p + R
h 
[~

I (iI 
~

(Eq. 59)

= R 11 + (R~~-R 11 ) (1
1 
. p) p

V 
• where P is a unit vector perpend i cular to the plane of incidence ,

R~ 

cos e _\JCE
_ s in2 O

cos 0 + C
E 

S i l t  0

. 2
— 

EE 
cos 0 — V —sin 0

R i l  cos 0

V are the reflect i on coefficients for the image field perpendicular and
V para l lel , respect ively,  to the plane of incidence ,

V c Jo
c = (1 —  ),
E CO

and 0 is measured from z.

For a semi-infinite ground , the electr ic field of the image

can be calculated from equation 55 and substituted into equation 59

V to ca lcu la te  the ref lected f ie ld .

To compute the near field at a point in space due to the

current on a wire structure , the field is computed for three current

distributions: sine , cos i ne , and constant functions on all wire seg-

ments and then summed vectoria lly .
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The wire segment is considered to be located at the origin

V 
of a l oca l cylindrica l coord i nate system with the point at which the

f ield is computed be ing (p ’ , cv ’ , z’). Tha geometry for a filament of

current of length L~. is shown be low . V

V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

z’

V 

Segment 
~~~~~~ 

V_V.— 
~~~~

2~~

For a s ine or cosine current d i s t r i bu t i on,the field can be written in

V 

closed form. 1 The p and z field components for a current

s in  kzI are:o cos kz

— 

I I e~~~~2 cos kA /2 e jkr
i ~ cos kA /2E (p , z — 

A -~ 2 kr
2 

- s i n  kA /2 kr
1 

sin kA /2

-jkr
V _ ( J  + ) 

(kr 2)2 
(kz ’ -kA/2) 

S I f l  kA /2

V ‘Stratton , J. A. ,  Electromagnetic Theory, McG raw Hi l l  Book Co., New York ,
191+1 , p.454.
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V 
+ (J + (kz ’ + kA /2) 

{ ~~~ 

(Eq. 60)

E (p’ , z’) = 
~~ (-j ~~

) ~~ 
[
~~z , -kA /2) e~~~~2

- (kz ’ + k~ /2) 
e~~~~l {cos kA /2 

+ 
e~~~

r
2 

h ~~

- (kz ’ - kA/2)2 (j + tL ) 
{ ~~~~~~~

V 

- 
e~~~~l 

+ (kz’ + kA /2)2 (j + ~ — )  e~~~~I

(kr
1
)
2

V 

-sin kA /2 
6cos kA /2 (Eq . 1)

The expression for the field of a constant current distribution i nvo l ves

an integral of exp(-jkr)/r which must be evaluated numerically. The

field components for a current I are

I -jkrV 

E~ (p ’ , z’) = ~~ (-j ~~~
) (kp ’) + kr

2 ~kr 2)~ 
(Eq. 62)

V -jkr,. 1 ~ e 1
-Ij + 2r 1 (kr1

)
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E (p’ , z’)  = 
~~ (-J ~~~~ 

) {  f 

dz + (j + kr
2 ~ 

(kz’ -kA/2).

—jkr —jkre 2 
~ + ) (kz ’ + kA/2) ~ I

~2 
kr 1 2 (Eq. 63)(kr

2
, (kr

1
)

These exp ressions are separated into real and imag inary parts for

evaluat ion in the program. The coord inate p ’ for a wire segment is taken

as the distance from the observation point to a poin t on the side of the

segment as shown be low.

*

Also, the components E are multiplied by p/p to account for the change
in vector d i rec t ion .

Ground image contr ibut ions are taken into account in the same

manner as for the far field computation .
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C. BANDED MATRIX ITERAT ION THEORY AND DEVELOPMENT SUMMARY

1. I ntroduction

This section is a sumary of the theory and development of the
V 

BMI (Banded Matrix Iteration) solution techn i que for the linear simu l ta-

neous equations ar ising from the thin-w ire method of moments formalism.
Standard methods of computer solution are too expensive for application

to large problems . The BMI technique was developed to reduce this cost.

V I t was chosen f rom a v a r i ety of possible new alterna tive method s after a

rev iew of the literature (reference 1). The first application was for V

single straight wires , either antennas or scatterers , up to 10 wave-

lengths l ong (reference 1). Success in this application motivated a
V 

V study of multiple wire configurations and a test of application moti-

vated to wire grid prob l ems (reference 2). Ini t i a l l y, studies were

restricted to prob l ems involving 100 unknowns or less for economic reasons;

exact solutions computed by standard methods were compared to the itera-

tive solutions. The relative efficiency of the BMI technique was suffi-

ciently high to justif y construction of a computer code for performing V

the out-of-core storage manipulations required in the solution of large

prob lems. Dur ing construction of this code , the numerica l properties of
the techni que were studied and convergence measures were investigated

(reference 3). The combi nation of the use of symmetries and the BMI

study, w ire grid models of conducting bodies of revolution were investi-

gated . Model parameters were varied , and computed results were compared

to exact theoretica l results. Consistentl y good agreement was obtained ,

and the resu l t ing model c r i t e r i a  were used in ca lculat ions for models of

objects of varied shape and size. Prob l ems with up to 1 000 unknowns

were s tud ied  (reference 5) .  One summary paper was published following

the stud y of single wires (reference 6), another was published follow i ng

the stud y of multiple wires (reference 7) and a third was published

after large prob l ems were studied (reference 3).
In parallel with these studies , a GEMACS computer code was

undergo i ng i n i t i a l  development. The long term goa l is to incorporate a

36 

-— V.--- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— ~~~~~~~~~~~~~~~~~~

wide range of methods for solving electromagnetics problem s in a sing le
user-oriented package.

V 2. Theory

F The method of moments is a formalism for reducing an integra l

equation to a set of linea r simu l taneous equations

AX = b , (Eq. 64)

where A is the complex NxN impedance matrix , X is the column vector of

complex coefficients in the curren t expansion . and b is the complex

exc i tation col umn vector. A variety of choices for the integral equa - V

tio n , ex pansion f unc ti ons , and weighting functions are in use. It is

assumed that the combination chosen leads to an unsymmetric matrix A. V

If N is sufficiently small , equation 61+ can be solved without

using periphera l device storage. Comparative efficiencies of different

solution algorithms can then be predicted from the required numbe r of

• comp lex mo ’s (multiplicative operations). If N i s  large , other factors

* must be considered in determining re la t ive  efficiencies . These are

discussed in s ubsect ion 7.
The most efficien t genera l method for solving linear simu l - V

taneous equations is to decompose the matrix into a product of l ower and V

upper triangular matrices using Gaussian e limination (reference 9). This

requires approximatel y N3/ 3 mo ’ s. Solution in fewer operations requires

some special feature of the equations

For thin-wire moments prob l ems of sufficient size , such a
special feat~:re is available. The r :iatrix elements correspond to inter-

actions between wire segments. Th’~ interactions decrease with increasing

di stance between the segments. A detailed in subsection C .5, the segnients
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can be numbered such that the difference between segment numbers for all

close-neighbori ng segment pairs is small compared to N. The largest V

matr i x elemen ts can then be kept chose to the pr inci pal diago nal of A. V

The matr ix is separa ted i nto

A = L + B + Ii, (Eq . 65)

where B is a banded matrix with upper and lower bandwidths M (numbers of

minor diagonals), L is the triangular portion of A bel ow B, and U is the

triangular portion of A above B. Equation 64 can be written as

BX = b - (L+U)X (Eq. 66)

A n it era t ive scheme is then

= b — (L + U)X .  ( E q .  67) V

where X . denotes an app roximat ion to the solu t ion a t the ~th iterati on ,

and X~÷1 denotes an approximation to the solution at the next iteration .

Some star ti ng value X i s chosen , and X 1 
is computed from equation 67.

Then X
1 

is entered on the right-hand side , and X2 is computed . If the

sequence converges , an approx i mate solution of equation 64 is obtained .

Equation 67 must be solved at each iteration . The cost is

minimized by decomposing B into a product of lower and upper triangular

ba nded ma t r ices , BL 
an d B

u . Equation 67 is then sol ved by forward
V 

elimination in

B
1
Z~ = b - (L+U)X~ (Eq. 68)

followed by back substitution in

z. (Eq . 69) V

38 V

~~~~__________________________ V ~~~~~~ V-V-~~~•~~~ V ~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



—V.-- V ~~V. V~~ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~V _ V -
-,

Decomposition of B is similar to full matrix decomposition , except that

the cost can be much less. The cost depends on the pivoting strategy

used . Full pivoting destroys bandedness , and B
L and B

u 
wou ld not be

banded. Par tial pivoting doubles the bandwidth of either B
L 

or B
~
.

Pivoting on the pr incipa l diagonal elements of B retains the bandwidth

V of M for both BL and B
~
. The latter is the least expensive in terms of

mo ’s, requiri ng about NM2 - 2M3/3. Pivoting on the diagona l elements

i ncreases the risk of lar ge errors due to acc umu lat ing round ing erro rs
during decomposition . This subject is discussed in subsection C .4.

Assuming that B is decomposed by pivot ing on the principa l

diagona l elements , equation 67 can be solved at a cost of about N
2 mo ’ s

for each iterati on . Assuming that K iterations are required for conver-

gence , the total cost for the itera t ive sol ut ion p rocess is NM2 - 2M3/3

+ KN2 mo ’ s. Based on the number of mo ’ s required , the e f f i c i ency g of
p the banded matrix iterative method relative to the best genera l method

is

g = N3 [3(NM
2 

- 2M 3/3 + KN2)] 1 (Eq. 70) 
V

This quantity is discussed in  subsection C.6.

Theoretically, convergence of the sequence is assured if the 
V

spectra l radius (magnitude of the largest eigenva l ue) of 9 1 (L+Ll ) i s  
V

less than one. If the spectra l radius is greater than one , the sequence

must eventually diverge. If it is only slightly greater than one , the

sequence may initi a l l y  converge and then diverge . This behavior is

V called pseudoconvergence. It has been observed in this research (reference

5). The b”st approx i mate solution obtained during pseudoconvergence may

be sufficientl y accurate for some purposes , depending on the quantity of

i n teres t and the percent error.
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For the i terat ive method to be ef f ic ient , a reasonable con-

vergence rate is necessary. If the choice of M and the segment numbering

scheme results in such a rate , it might be expected that the solution of

BX
1 

= b (Eq. 71)

wou ld yield a reasonable approximation to the exact solution Xe• This

is verified in practice. As a consequence , the zero vec tor can be used
for X , and the multiplication (L÷U)X need not be performed . The cost

of obtaining X 1 is then less than N2 (assuming B has been decomposed).

If M<<N , most of the cost of one iteration is saved . This is signifi-

can t only for small problems . The i mportant point is that if the con-

vergence rate is high enough for efficient solution , X 1 
is a reasonabl e

approximation to X
e if the zero vector is used for X .  Hence , no phys i cal

arguments or expensive calculations for obtaining a starting va l ue are

required .

V 
3. Convergence Measures V

The iterative solution process is terminated by a numerical CC

(convergence criteri on ) on some convergence measure. In the early

st~~ ies of small prob l ems (references 1 and 2) the measure used was

the RE (relative error),

RE. = [(x. - X )~~(Xi - X )/X
e
t
X
e
]
l/2

~ (E q. 72)

where (t) denotes the complex conjugate transpose. The exact solution

X
e was obtained by full matrix decomposition using Gaussian elimination .

The computer CP (centra l processor) time s for example problems were

recorded bo th for the exac t sol ut ion p rocess and fo r the BMI p rocess.
Efficiencies computed from CP time s and from numbers of mo ’s (equation V

70) were s i milar , verif y ing that the number of mo ’s is an adequate mea-

sure of effic iency for solution processes if no out-of-core mani pulations

are required .

40 

~~~~~~~~~~ V V V~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



V — V. V - V V -  VV V. -

Due to the cost of computing X
e 

for large probl ems , the RE was
ava i la~ he as a convergence measure only during the research phase on V

sma l l  problems . An alternative measure called the BCRE (boundary con- 
V

d iti on relat ive error)

BCRE . = [(AX. - b)~~(Ax . 
- b)/b

tb] U’2 (Eq. 73) 
V

was proposed (reference 1). A stud y of the relationshi p between the BCRE

• and the RE for a variety of small problems showed tha t the BCRE is not

always a reliable measure of convergence (reference 2). This lack of rehi-

a b i l i ty can be traced to the sta b i l i ty c~f the equat ions for a given prob-
• l em (reference 3) . This subj ect is discussed in subsection C.4. 

V

An alternative measure of convergence is available (reference 3). V

The IRE (iterative relative error) is def i ned by

IRE
J 

[(x
i 

- X . 1 ) (X. - X . , )/X .
tX .]

l/2 . (Eq. 74)

The IRE is a measure of the relative change in the sequence of approx- 
V

* imate solutions from one iteration to the next. It is an adequate V

measure of convergence .

The sequence of values of the RE or the IRE has been found to

be approximated by a simp le exponent ia l  function (reference 3). As a

result , the IRE can be approx i matel y predicted at any iteration from 
-

the values at the prev ious two iterations ;

1 IRE. = Pe~~~ 4 P = IRE~ ( I RE~~ 1 / I R E ~)~
2 I R E ~ _ 1 = ~~~~~~~~~ 5 IRE .~~1 = pe Q

~
(J
~~
) 

. 

V

3 Q In ( I RE / IRE ) 6 IRE ( IRE ) / IREj—l j J +l j— l

(Eq. 75) 
V

1+1
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The sma l lness cr i ter ion for convergence can then be placed either on the

IRE or on the predi cted IRE a t the next it era t ion .
Stat i s t i cs  gathered for small  problems showed that the pre-

dic ted va l ue of the IRE is also a good prediction of the RE , at least

for cases of rap id convergence (reference 3). This heads to a defi nition V

of the PRE (predicted relative error)

PRE . = (IRE ~)
2/lRE~_ 1 . (Eq. 76)

The PRE (Equation 75, number 6) is an adequate measure of convergence.

The flexibili ty of the GEMACS code allows the user to specif y h i s

V 
own convergence measure. Any quantity that is readily (inexpensively)

V - computed can be used . Since some quantities such as the BCRE may not be

adequate due to instability of the equations , new measures should be

used with caution .

4. Stability

The subjects in this sec t ion have been i nves t igated in grea t
deta il in the last two dec~des. The purpose of this section is to
introduce , in a nonrigorous manner , those definitions and concepts

which were useful in this research . The material and notation closely

fo l low reference 9. Most quantities in this report are complex , whereas
those in reference 9 are real.

The euclidean length or nor m of a vec tor X i n comp lex N-

di men siona l space is def ined as

V l x i i  = (X tX)~~ 2 (Eq. 77)

Other vector norms exist , but wi l l  not be used here . The norm of a

comp lex matrix A with N rows and N col umns is defined as
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h A i l  = max ‘ J~-f-j - ~JI/~~ 
(Eq. 78)

where 0 denotes the zero vector. An alternative de finition is

h A ll max IL A X II , I I X IH 1 (Eq. 79)

V 
This can be interpreted to mean that If the unit sphere in the space of

V X is mapped by AX into the space of b, HA Il is the longest vector tha t

will be obtained. 
V

Simi la r l y ,  the norm of the invers~ of A can be def in ed by

V

. 
h jA ~~h l = max (Eq. 80)

o r b y

iI A 1 l I  = m ax hl A
1
b h I ,  I b I I l (Eq. 81)

Th us , if the unit sphere in the space of b is mapped into the space of X
V 

* by A 1 b , h l A 1 hl  is the longest vector that will be obta i ned .

The condition number of A , denoted by cond (A), i s def in ed as

cond (A) = I A~~ I A
1 

(Eq• 82)

This numbe r is not easily computed . It is conceptuall y va l uable in a

variety of ways. If the vector b is subject to the uncertainty 5b , the

V unce r ta in ty  SX in X is bounded by

V ~—I~H cond(A) . (E q. 83)

V 

The relative error in the solution is then bounded by the product of the

relative error in b and cond (A). If the matrix elements in A are subject

to uncertainty ÔA , a si m i la r boun d i s obt ained . In each cas e, a large

V 
value of cond (A) is a warning that the solution may be highly sensitive

to small changes in A or b.
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Anothe r useful bound involves the ratio of the RE to the

re la t i ve  res idua l, wh ich is the BCRE used in this work :

cond (A) ~~
- BCRE ~ cond (A). (Eq. 84)

Since cond(A) 1 , this ratio can be very small or very large. For a

variety of thin-wire moments problems , this ratio was found (reference 2)

• to be between 1 and 10 , with an average of about 3. It is obvious that a

much wider range of values is possible. If cond(A) is large , A is said

to be ill-con ditioned . One consequence of ill-conditioned matrices is

that the BCRE may be quite small when the RE is large. The BCRE may

then be an adequate measure of convergence in the banded matrix iter-

ation method only if cond(A) is near unity.

A measure of stability that has been used in the method of moments V

(reference 10) and that has properties similar to those of the condition

number , is the p ivot ratio. This quantity is easily calculated during

decomposition by Gaussian elimination . It can be defined as the ratio

of the magnitudes of the first and last pivot elements (reference 10) , or

as the ratio of the largest to the smal lest of the magnitudes of the p ivot

elements. Only the order of magnitude of the pivot ratio is significant.

The choice of definitions is not important when compared to the effect

of the choice of pivoting strategies. While pivoting on the largest

element of a row or co l umn wil l  reduce the cumulative effect of rounding

errors , it also reduces the pivot ratio. Hence , pivoting on the diagonal

elements should produce a larger pivot ratio for ill-conditioned matrices.

In the banded matrix iterative scheme , the banded matrix is

decomposed us rlg Gaussian elimination . The decomposition is accomplished

by pivoting on the diagonal elements. (Pivoting on other elements would

increase the bandwidth and resul t in loss of efficiency.) The pivot

ratio for the banded ma trix is then availab le as a measure of ill-con-

ditioning of B. Unfor tunately, no method has been found to relate

either the p ivot ratio to cond(B) or cond (A) to cond(B). It is possible

4L~
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that either A or B could be ill-conditioned while the other is not.

Th i s wou ld  p roba b l y  depend on th~ physi cal  p rob l em , the cho i ce of segment

numbering schemes , and the cho i ce of bandwidths. Certainly cond(B)

should approach cond (A) as M approaches N.

5. Segment Numbering

Two types of segment numbering problems occur. For the iter-

ative scheme to be efficient , the segments must be numbered so as to
V keep the large matrix elements in the band . The best cho i ce of num-

bering for this purpose is obvious in some cases and not in others.

More than one cho i ce may be apparent. The same log i ca l process can be

used to number segments for a variety of prob l ems , as w i l l  be show n .
The other problem in numbering is related to the requirements for input

data for the geometry processor in any moments code. Generally speaking,

• the code automatically numbers segments in sequence along each wire , in

the order in wh i ch wire data are entered . For the iterative method ,

this numbering is adequate in some cases and not in others. If some

other numbering is necessary, the obvious method is to enter the wire

data in the order desired . For most codes , this could require a ted i ous
V 

process of entering each segment as a single wire and suppl ying connection

V data . An easier way wil l  be shown tha t invo l ves segment renumbering.

a. Numbering for the Iterative Method

The logic for the numbering scheme that is adequate for

many problems is most easily explained for flat objects (all wires in a

plane). The basic idea is to superimpose a set of narrow parallel

strips on the object of interest. Fi gure 3 shows the s t r i p s  as separated

by dashed lines , with a lumpy appearing object in outline. Assuming
V that the object is a wire loop, numbering is as shown in the figure.

Starting at one extremity, numbering proceeds from left to right until

all seq-i~ents in the first strip are numbered . Moving to the next strip,

numbering aga in  proceeds from l e f t  to r ight .  Th is cont inues unt i l  a l l
segments are numbered. In the figure , it is assumed that the segment

end occurs at intersecti ons with the dashed lines. This need not be the 
F

case. Strip widths can also vary. This depends on the geometry of the

object.
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Fi gure 3. Parallel Stri ps Superimpo sed on a Wire Loop
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Sect ion E of reference 2 includes a discussion of this

number ing scheme as it applies to example problems . General ly, any f la t

V 
object should be oriented so that the strips run across the narrow

d imension of the object. This keeps the number dif ference between seg-
V ments in adjacent strips as small as possible.

The strip numbering scheme has a direct application for

some three—dimensional objects. The simplest is a cylindrica l grid.

Numbering a rectangular grid by the strip method and rolling the grid
• in to a cylinder (about the correct axis) results in a helix-like number-

ing scheme. This is appropriate when the cylinder length is greater

than or roughly equal to its c rcumference . If the cylinder has end

ca ps, numbering should proceed from one end cap center to the other.

The pattern i s then sp ira l, helica l, and spiral. However , if the

cy linder is short compared to i ts  circumference , the sp iral scheme may
not give an efficiency as high as that obtained by orienting the cylinder

axis normal to the plane of the strips.

A sphere or cube can be handled much the same as the

cyl i nder with end caps. For elongated shapes , numbering should start at

one extremity.

A similar method for segment numbering that can be auto-

V mated is discussed in reference Li. It is called geometric cell divi- V

sion . Figure 1+ shows a set of pa rallel strips norma l to a direction

vector d. For planar objects , is was noted that the set of strips could

be superimposed on the wire object; segment numbering would proceed

along each str ip starting at one extrem i ty of the object. For an irregu-

V lar object , the cho i ce of direct ~on for d is not obvious.

Figure 5 shows an irregular planar object with four

possible direc tions for d. If the small appendages were absent , d 1 would

be the obvious cho i ce. Numbering would then be in str i ps across the

narrow dimensi on of the large rectang le. With the appendages present ,

dir ections d
1 
and d

3 
are not advisable. In some strips , numbering would

proceed across the large rectangle and along the length of one projection -: V

before advancing to the next strip. This can be alleviated somewhat
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by u s i n g  d i rec t ion d 2, so that no stri p runs through the length of
the longer projection . The other cho i ce is d14, and i t is c l e a r l y  the
best. No strip runs both across the large rectangle and along a projec-

tion , and the strips that cut through both projections include few wire

segments.

d

Fi gure 4. A Set of Parallel Strips Norma l to a Direction Vector d

After studying severa l examples of this sort , a consistent
result emerges. The best choice of orientation apparently lies along
(or at some small angle to) a principa l in ertial axis of equa l point
masses located at the w i re  segment centers. The best prin cipa l axis is
always the one about which the moment of inertia is least. This scheme

V w i l l  be called the PASS (Principal Axis Sli cing System). No proof has
been found that this orientation for sli cing is the best cho i ce, and
its practic ality would have to be exhibi ted in practic e. The method can
be extended to three dimensions as follows . Let the princ i pal axis

V coord i nates be denoted X , Y , Z, with the least inertia about the X-axi s

1i8

________________________ 
V V 

V V V V . V _ V V V_ 
V ;
~ V. VVVV ~~~V~~~~~~~~~~

_ V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——



V - -

HR
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V 
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and the greatest about the 2-axis. Divide the object by a set of planes

norma l to the X-axis , wi th the separa t ion of the p lanes somewhat less
than the wire segment lengths. The space between adjacent planes is

divided by planes norma l to the Y-axis , lead i ng to a se t of paral le l
tubes of square cross section in each planar section norma l to the X-

axis .  Number ing proceeds along one tube (paral lel  to the Z-axis ) s tar t ing
at one edge of the sect i on of the object. It proceeds from tube to tube

• across the object , and then to the next planar section . The first

planar section is always at one extrem i ty of the object. Fi gure 6

shows the numbering obta i ned by this method for a rectangular object

model ed with a regular wire grid.

For a problem such as a large cyl inder w i t h end caps or

S other such flat-ended object , the method of geometric cell division is
-

. 
probably inferior to the spiral—helical-spira l numbering method . The

former results in numbering across the end in strips before proceeding

along the object , so that a rather large difference in segment numbers

occ u rs nea r the edge whe re numbe r ing beg ins. The limited practica l

experience with large fat objects precludes any definite statement con-

cerning the best approach.

* b. Segment Renumbering

As mentioned earlier , the geometry processing portions of

most programs provide segment numbering that is sequential along each

wire in the order in which wire data are entered . This segment number-

ing is adequate for the banded matrix method for some prob l ems . If i t

is  no t , it can still be used init i a l l y  to simplify the model input data.

The segments can then be renumbe red in any sequence desired . Details

V and examples of the renumbering process as it was used in the research
phase are contained in Section E of reference 2. The GEMACS code permits

the user to number the segments in any order des i red .
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Figure 6. Part of the Segment Numbering Obtained with the Pr incipa l
Axis Slicing System for a Rectangular Paral lelpiped
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6. Cho ice of Bandwidth
The choice of bandwidth M depends both on the prob l em and on

the numbering scheme used. The i dea l cho i ce yields a minimum solution
V 

cost. An understanding of the formula for efficiency in equation 70 is V

hel pful in making this cho i ce.

a. Eff iciency Characteristics

The eff iciency can be written

g 2 
1 (Eq. 85)

f (3-2f) + 3K/N

where f is ti/N. A useful characteristic of this efficiency is obtained
V by sett ing K equal to zero. The upper limit on g is then

= 
2 ‘ 

(Eq. 86)
f (3—2f)

This function is shown i n figure 7 as a solid line , treating f as a

continuous variable. The actual efficiency always falls on or below

this line. V

For any g iven p rob lem, with a particular choice of segment

numbering and convergence criterion , the ac tual e f f ic ien cy as a f unc t ion S
of the bandwid th i s  as fol l ows. A t M equ al  to N , the solution X 1 w i l l

always satisfy the CC (convergence criterion). (When the relative error is

not ava i lable as a conver gence measur e, at least one iteration is necessary

to test for convergence. If N is large , one iteration is of little

cos t , and will be ignored in this discussion.) As M is decreased , the

error in X 1 
gradually increases. Experience shows that this error may V

not increase monotonical ly , but may have m inor osc i l l a t ions superi mpose d

(reference 1). Eventu ally, a bandwidth in the breaking reg ion is reached . V

This reg ion is a narrow range in bandwidth where the error in X
1 

is just

above or jus t  be low the CC. A breaking point can be defined as the largest

bandwidth at which the error in X 1 
is greater than the CC. At this

bandwidth , at least one iteration is required to reduce the error to

the CC. In most cases , the actua l efficiency wil l  then depart from

___________________ VJ
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the 9LIM curve. Because the savings in cost of decomposing B at a

sma ller bandwidth is g reater than the cost of a few iterations in the

breakin g reg ion, the e f f ic ie ncy generally cont inues to rise as M decreas es.
The rate of increase is smaller than that of however.

In some cases the actua l efficiency can depart from 9LIM
at the breaki ng point, then retu rn br i efly due to one of the m inor
oscillations mentioned earlier , and then depar t agai n . Th i s behav i or was
shown by a fictitious example in figure 7.

For any par t ic u lar CC , the actua l efficiency will rise

somewhat from the va l ue at the breaking point as M decreases , then reach

a peak and beg in to decline. The d iscrete nature of the process neces-
sarily means that minor up and down behavior over narrow ranges of band-

wid ths will occur. This behavior is highly dependent on the prob l em and

the segment numbering scheme.

Fi gure 8 shows the curve of 9L~~ 
and a set of dashed

curves obtained from equation 70, using the data from example problem 9
in reference 2. (The convergence measure was the RE. Po in ts  along the 

V

dashed curves were computed from the data in Table 45 of reference 2,

rep roduced here as table 1. Points for the curve at a CC of 0.1 percent

were approx i mated using the extended exponential function. )

Consider the curve for a CC of 10 percent. At f equal to

17/80 or 0.21 , the RE for X 1 
was 6.13 percent. This satisfies the

CC of 10 percent , so no iterations were required . Then either equation

70 or equation 86 y ields an efficiency of 8.7. This is the hi ghest

efficiency tha t can be obtained for this pr cblem at a bandwidth of 17;

re laxing the CC will  not affect the efficiency . Tightening it to some-
V thing less than 6.13 percent will result in at least one iteration being

performed , with a loss in efficiency.

The l ocation of the peak of the efficiency curve clearly

shifts toward smaller bandwidths as the CC is relaxed . The width of the

cu rve near  the peak na r row s as the CC i s re l ax ed.  Th e ra te of dec reas e 
V

in efficiency is less to the right of the peaks . V
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TABLE 1 . RELATIVE ERROR (
~

) FOR EXAMPLE 9, REFERENCE 2 (VERT I CAL
V HALF-RHOMBIC ANTENNA , N=80)

V V~~ 

BANDWIDTH 
V

ITERAT I ONS 4 5 6 7 12 17 
V

• 1 67.67 53.91 40.47 38.91 11.05 6.13
- 2 46.09 28.89 16.14 15 .12 1.36 .59

• 3 31.62 15.64 6.53 5.94 .18 V

4 21.69 8.46 2.64 2.33

5 14.87 4.57 1. 06 .91
- 6 10.20 2.47 .43

7 7.00 1.34
- 

8 4.80 .72

9 3.29

1 0 2.26 
V

11 1.55

- 12 1.06

* 13 .73
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If the prog ram user imposes a ti ght CC (about 1 percent

or smal ler  for small prob l ems), he can afford to pick M such that he

misses the peak efficiency by quite a bit to either side because the

peak is wide. At larger values of the CC , he will tend to decrease M to

try to stay near the peak , but he may be increasingly conservative to

avoid a point too much to the left of the peak. This is good in a

• 
sense , because use of larger bandwidths provides l ower initial errors

V 
and higher convergence rates , resulting in better performance of the PRE

convergence measure (see subsection C.3). If the user picks a bandwidth

too much to the left of the peak , slow convergence and low efficiency

will occur. Restarting with a larger bandwidth mi ght provide a hi gher

V overall efficiency even with the cost of an aborted run included .

b. Bandwidth Estimates for Long , Thin Objects
V 

- The shapes and locations of peaks of the efficiency

curves vary considerabl y from problem to prob l em . No method for accurate
P prediction of the bandwidth for peak efficiency has been found. A

V 
survey of example small problems did yield a trend when the CC is I

percent. It was found that the bandwidth for efficient solution could

be est imated f rom structure dimensions w i t h  fa ir r e l i a b i l i t y .  A bandwidth

M corresponds to a distance RM within which all interactions are to be

kept in the band. (For segments of length 0.1 A numbered sequentiall y

along a s t ra ig ht w i r e , a bandwidth of M corresponds to a d is tance of M x

0.1 x.) The distance in wavelengths for bandwidth estimation is shown

in fi gure 9 as a function of the object length in wavelengths for

V objects having a dominant dimension L. The vertica l bars show the

uncertainty in value for several prob l ems . The linea r trend is obvious.
V This trend was obtained from studies of prob l ems with 100

unknowns or less .  They were pr imar i l y problems involv ing long wires or

wire arrays. Studies of larger problems did not include bandwidth as a

parameter. The initial bandwidth was generally selected from fi gure 9.

For p lanar  or near-p lanar ob jects  and for th in  cy l i nde rs , rapid
convergence was fairl y consistently obtained . Fat cylinders , spheres ,

and objects vihere L is less than A requi re larger bandwidths (reference 5).

57

_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



V V _ V V V. V VV ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VVV •! V V
VV

_ V V V  V. V.__ V.V~~~~VVV V_V V_ V.V__VV.VVVV~_ V__V_VV_V V V V ._V_SVV._ V V

LA

Fig u re 9. The Linear Tr end Be tween the Bandw idt h
Estimate and the Object Length L
(R
M
= Dis tance Correspond i ng to Bandwidth)
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The parameter L is usually the largest geometric dimen-

V sion ; however , for comp lex objec ts , the cho i ce or va l ue of L may depend
V Ofl the exc i tation type and orientation (this is shown by an example

- 
in subsection D.3). Use of figure 9 for these objects may lead to

V pseudo—convergence for cases in which there are large (or small coherent)

interactions not included in the band .

V 7. Computer Timing Requirements

For small problems , the primary computer cost is the CP (centra l

processor) time required to compute matrix elements. Use of the BMI
V 

- 
solution process in the place of full matrix decomposition by Gaussian

elimination is primarily of academic interest for such prob l ems . The CP

* 
time for computing matrix elements increases as the square of N for most 

V

programs. The solution time increases as the cube of N for full matri x

decomposition . For sufficiently large N , the solution time by this
• method will eventuall y dominate. The iterative process is a method for

reducing the solution cost. The tota l cost for generating and solving V

V large problems is sufficient to justify optimization of the code for a

given computing facility.

V For prob l ems with N in the range below 1000, three primary V

factors contribute to the computer costs; the CP time required to compute

or fi l l  the impedance matrix , the CP time required to perform the multi-

plicative operations in solving the equations , and the PP (perip heral
V processor) time required for out-of-core manipulations. The PP time

includes input/output time and considerable bookkeeping time . For large

problems , the PP time is almost entirely assoc ated with the solution

process. A cost comparison of solution method s should include both CP V

and PP times . (The best comparison is actua l l y based on dollar costs ,
V but no two i ns ta l l a t i ons  use the same cost al gori thm to charge for total

computer resources used.) The PP time and solution CP time are extreme l y

dependent on the machine , the computing system , and the particular

computer code be i ng used. The soluticn CP time also depends on the

compiler used . Consequently, the efficiency based on the number of

multiplicative operations is used as a simp le assessment of overall

efficiency.
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The CP times required for solution on the CDC 6600 computer

(FIN 4.2 compiler) are shown in figure 10 versus the number of multi-

plicative operations required to solve example problems us i ng the itera-

tive method . The l i near dependence over such a w i de range i nd i ca tes that
the ef f ic iency based on number of mu l t ip l i ca t i ve  operations is a valid

comparison of CP costs between methods .

The PP t ime shows a s imi lar linea r dependence on the numbe r of
multiplicative operations , except that the PP times were higher by a

factor of about 15. This proportionality factor is extremely dependen t

V on the amount of fast access core available for matrix elements during

the decomposition of B. (For a given amount of storage , the PP time for

decomposi ti on of B shou ld be much less than tha t for decompos iti on of the

V 
full matrix using Gaussian elimination.) The amount of available core can

V be increased by a variety of methods including program segmentation or

over lay i ng . These methods were not used during this i nvestigation and

only l i i columns of the matrix could be kept in core for a prob l em with

1000 unknowns. As a consequence , the PP cos ts were the hi ghes t doll ar
cost of the study.

The CP times required by the modified AMP code i ncorporating

V the BMI solution technique for computing matrix elements is shown in

figure 1 1 versus the number of unknowns. The upper ~urve is for wire

grid prob l ems and the l ower is for wire prob l ems with no multi p le wire V

junctions. The difference is due to a repeated search of junction con-

nection data , and is not apparent for small problems . Most of this cost

difference is eliminated in the GEMACS code by rep lacing the search with 
V

a circular linked list. The CP times for large prob l ems can be further V

reduced by using less expens i ve algorithms (such as the Hertzian di pole)

to compute matrix elements corresponding to interactions between segments

separated by about a wavelength or more. This option was not used for

the example problems . Further cost reductions may be obtained by
V 

relaxing the accuracy restrictions in computing large matrix elements.

These elements should be accurate only enough to match the overall accuracy

required of the modeling and solution process. 
V
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D. SUMMARY OF RESULTS

Numerica l results were obta i ned for a variety of thin-wire problems

V (references 1 through 5). Three different computer programs were used . 
V

The general results and a few examples are listed here. All calculations
V were performed on a CDC 6600 computer. Dimensions are in meters.

1. Single Strai ght Wires

The first results (reference 1) were obtained using the moments

formalism of Harring ton (reference 11). That is , the potential integral

equation was solved using pu l se expansion functions and point matching

(collocation) at wire segment midpoints. All examples were single

• stra i ght wires , either antennas or broadside scatterers , with L (length)

to A (wavelength) ratios rang ing fom 2.5 to 10. Length to D (diameter)

ratios were either 74.2 or 1000. The con V’ergence measure was the RE ,

and the convergence criterion was 1 percent. There were 10 segments per

wave length used , w ith segment numbering sequential along the wire. It

was found that:

(1) The iterative solution converges monoton ically at bandwidths

V from 3 to N. (With 10 segments per wavelength , a bandwidth of

3 means that interactions at distances over 0.3A are excluded

from the band.) An example of the convergence behavior is

V shown in figure 12. The wire is a centerfed antenna with L/A

= 2.5, L/D = 1000, and N = 25. The fi gure shows the RE at

each iteration for a given bandwidth. Points are connected by

V a line for clarity; the results are necessaril y discrete.
V 

(2) Convergence rates depend on the wire radius , as do errors in the

in i t i a l  solution , X 1
. Thinner wires result in better efficiency .

V 

(3) Rel ative errors for X
1 
are larger for resonant antennas than

for nonresonant antennas for the same bandwidth. The differ-

ence is greater for smaller wire radii.

(4) The relative error for X 1 
does not decrease smoothl y and

m ontonica lly with increasing bandwidth. Periodic variations

occur at changes in bandwidth that correspond to half-wavelength

changes in distance along the wires , as exemplified in fi gure

13.
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(5) As ind i cated in subsection C.3, convergence behavio r fo r a
given bandwidth can be approximated with varying accuracy by the

formula RE(~) 100 e
u ’ , where i is the number of iterations

and Q is a function that is dependent on the bandwidth. The

dependence is linea r in a first approx i mation , with an osci lla-

tion superimposed . However , the slope of the linea r part is

dependent on the exc i tation , length , and wi re  rad iu s.
(6) For a l ength to wavelength ratio of 10 , iterative solutions

wi th a relative error of 1 percent were obta i ned with an

eff iciency of about 7. For a relative error of 10 percent , an
additional reduction in CP time up to a factor of 2 was obta i ned .

(7) The bandwid th resulting in peak efficiency varies with wire
V 

length in a roughly linea r fashion . At 10 segments per wave-

length, the optimum bandwidth is about 1+ of 5 for 3X wires and 
V

in the range 10-15 for lOX wires .

The reader is referred to reference 1 for details and to 6 and 7 for

summary comments.

2. Mul t ip le  Stra ight Wir es
The second set of results (reference 2) was obtained by rnodi- V

fy ing program WAMP (reference 12) .  That program is based on the Pockling-

ton integra l equation , with pulse plu s sine plus cosine expansion func-

tions and collocation . With N wire segments , this cho i ce of expansion

function requires 311 current coeffici ents. I mposition of “extended

continuity conditions ” at adjacent segment midpoints reduces the number

of unknown s to the i~ va l ues of current at the segment mid points. Point

continuity in the current is not obtained at junctions. An extended
• continuity method is also used at multiple junctions , but the method

is considered poor for w ire gr id prob lems .

Using this program for generating the equations , various

combinations of thin-wire geometries were used to investigate the
V 

capabilities and limitations of the banded matrix method . Thes e

included :
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(1) One straight wire .

(2) Two parallel centerfed antennas at vary i ng separations and

radii.

V (3) Two collinea r centerfed antennas at large and small separations.

(lp) A l inear array of paral le l  dipo les . V

(5) Square and c i rcular  arrays of paral lel dipoles.
(6) A two-dimensional array of short dipoles.

(7) A helix antenna.

V (8) A ver t ical  half-rhombic antenna over sea water.

(9) A wire—gridded rectangular strip.

• (10) A square l oop.

(11) A pair of crossed wires .

V In each case, N was restricted to 100 or less for economic reasons.

For many of the examples , t he sequence of solutions converged
uniformly to the exact solution . Divergence was forced for some examples V

by using a comb i nation of element numbering , geometry , and bandwidth so

that some large matrix elements were not contained in the B band. The

genera l approach to segment numbering for the BM I solution techni que was V

* 
developed during this phase.

Because of the wide variety of geometries i nvolved in these

examp les , the resul ts  are not in a form to be easily summarized . The

convergence measure was the RE. At a convergence criterion of 1 percent ,

efficiences were generally around 5 to 10 and up to 23. The iterative

process was interrupted for some prob l ems when the RE was first reduced

to less than 30 percent. The far field pattern was computed from the

approximate solution. The iteration was then continued to the I

percent l eve l , and the far field pattern was again computed . Comparison

of the far fields obtained from the two current distributions indicates 
V

that a 30 percent CC may be adequate for far-field pattern determ i nation. V

Example 12 of reference 2 is reproduced here to exhibit one

of the prob l ems with automating the segment number ing scheme called PASS

(see section C.5). Table 2 shows the description of the problem ; a
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TABLE 2. DESCRIPTION OF EXAMPLE 12 FROM REFERENCE 2 V

TYPE: Square loop

IV

DIMENSIONS: 2.5 meters on each side

R,~= 0.0015, x=l

SEGMENTATION: 1 0 segments per meter , tota l of 100

SEGMENT NUMBERING: 
V

50 99

• S

S .

6
1~

2 51

1 3 5 • . .  V

Excitation : Segment 25 (center of bottom edge)

EXACT SOLUT I ON CP TIME (sec): 14.178

V 68
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square 1 oop antenna . Dimensions are in meters. The strip numbering

scheme produces the segment numbering shown if the stri ps are oriented

properly. (The vector d in figure 4 would be tilted 45 degrees to

the right.) Table 3 shows the convergence data obtained . Efficiencies

are shown based both on comparative computer centra l processor times and

on comparative numbers of multiplicative operations.

The problem with using an automated PASS system for this

problem is that the geometry is redunant. The principa l axes can lie

either parallel to the sides of the square or pass through its corners.

The former would yield a poor numbering scheme , because numbering would

• be sequential along one edge , then alternate between oppos i te sides. An

efficiency greater than three is unlike l y with such number inq .

It wou ld be possib le , however , to automate a slicing system

for numbering that would allow the user to specify the orientation for

the vector d.

For the numbering actually used , the bandwid th for ef f i c ie nt

solution could have been estima ted from figure 9 using an object

* 
length (corner to corner circumferential distance) of 5X . A distance R

M
of about 0.7A is suggested by fi gure 9. The difference in segment

numbers for segments separated by O.7X is 14. A bandwidth of 114 provided 
V

peak efficiency.

3. Mod ified AMP 4
The results documented in references 1 and 2 were sufficiently

encourag ing to mot ivate development of a computer program for so lv ing

large problems . The AMP (Antenna Model irg Prog ram) was selected for

modification (reference 13). The AMP cooe uses the same moments formal ism

as the WAMP code except for continuity schemes at junctions. Reference L1

discusses the modifications and the resulting code.

A number of problems of intermediate size (N ~ 300) was investi-

gated (reference 4). The most important of these were the w ire grid models

of conducting objects of various shapes. A parameter study (wire radius ,

segment length and associated mesh size) was conducted for two sphere problems .
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TABLE 3. RELATIVE ERROR (PERCENT) AND CP TIME (SECONDS) 
V

V FOR EXAMPLE 12 FROM REFERENCE 2

BANDW IDTH 
- 

V

ITERATIONS 6 10 14 18 22
V 

1 ‘47.09 22.36 10.70 12.47 10.50

2 23.98 4.95 1.25 1.67 .97

3 12.49 1.1 7 .22 .23

4 6.53 .28

5 3.42

6 1.79

7 .94 
_ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _

V TIME 0.738 0.477 0.453 0.577 0.591

EFF (CR TIME) 5.7 8.8 9.2 7.2 7.1

EFF (MO’S) 5.3 
- 

8.5 8.8 6.8 6.5

V - 
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The reader is referred to reference 4 for the details and to reference 8

for a summary. The resulting guidelin es call for segment lengths somewhat

less than O.2A as a maximum and a wire radius of about O.025A . Predict ed
V •

~ far f ie ld  patterns and b i s t at i c  scattering cross sections for model s

constructed with these guidelines were consistentl y in good agreement

with the independen t results from the literature.
V The modeled obj ec ts i n th i s  study all had rotationa l symmetry .

• The models were constructed with many-fold rotational symmetry. Both

this symmetry and the iterative method were used in the solution process.

V 
V Due to symmetry operations performed on the matrix , the iterative method

was not highly efficient in this stud y because large submatrices and band-

V * widths were required . This is not especially important , because the

V only significant cost for such problems is in generating part of the

i mpedance matrix.
V Reference 5 includes a number of example prob l ems with N
V 

ranging up to 1 000. The solutions were mostly obta i ned without using

symmetries. Banded matrix iteration is shown to be a useful solution
V method for large problems.

Most of these example problems were chosen because the predicted

current distribution or far fields could be compared to independent

results from the literature. Few problems of the des i red electrical

size range have been solved for current distributions , so most of the

comparisons are to theoretical far fields. As noted previously, reasonabl y

goo-1 far fields can be obta i ned from inaccurate currents. Comparison to
V theoretica l far fields is not the best validation for cho i ce of model

parameters.
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Comparisons of shapes of grid current distributions and sur- V

face current distributions are possible in some cases. The wires
- . usually must be oriented on the surface alonq the natural coordinates ,

because surface currents are computed by component along those coord i-

nates. A rectangular p late modeled by a square mesh grid is an obvious
V example. For a sphere , the natural wire orientations are along lines of

latitude and longitude. For plane wave scattering, surface currents are

known for the E— arid H-planes. If the plane wave is incident along the

• polar axis , H-pla ne currents are q--direct ed and can be compared to

currents on wires crossing the H—plane and o r i e n t e d  along l i nes  of
• la titude. E-plan e surface currents carr ot be compared to currents on a
V set of wires along a line of long itude , becaus e t hese c u r r en t s br eak up
V and run  th rough t~’e pole on a vari ety of wire paths. If the plane wave

i s  i nc i d e n t along ~ s ine norma l to the polar axis and the electric fi e ld

is in the eq uatorial p lane , both comparisons are possible. In the E-

p l a n e , the grid is essenti a lly rectangular. Currents are ~- dir ected in

the H-p lane , and can be compared to currents on wires along lines of
V latitude except at the poles. Such a compar ison is  shown in f i q u re  14

* for a sphere with ka equal to 4 .7  (example 13 fronr reference 5). The
.V lode l used 996 w i r e  segm ent s for a su r f a ce  area of 7 square w a V e —

I enqth s .  The pi ~ -d I cted hi s t a t  i c scat ter i rig c ross  s e c t  ion wa s in

e~ce 1 1 en t ao reeV )cn t w i t  Ii the O \ JC  t t heore i ca I resu i t s  of K i r i g  and

~J l • ! ( r e f  e re nce 14) -

In qenera l , the iterative process yields good efficiencies for

p lana r and near—planar wire grids when the strip numbering scheme is

u-.&-d and the bandwidth is chosen f rom t
V

i q u r e  9.  I t  a lso work s w e l l

~or ~ 1 riders w i t h  dia m eters less than about a h al t
V
_ wa ve ler r qth. For fat

-. I i -rde r~ a nd s pheres , lar ger bandwidths are requ i red for convergence .

V V H. ~ ho-~e r i  t on f i g u re  9 for these problems y i e l d  pseu deco ri— V

,,
V w e  or diverg ence. No rule for bandwidth selection in such cases

V 
- V V~~ e h~- st  L J d \ V  ~ t such probl ems was b r e  - I t. I ~. ~~0S S  ft 1 e

• . - r r i ,~ 1 V V
~ V! d , V S contribute to this prob lem; example 15 of rererence

- t to  i l i ves  t ga t e  t h i s  po~ s i hi 1 i t v

— —~~ —— - —— — V~~~~ 
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Fi gure 14. Amplitude of Current on a Sphere for Plane Wave Scattering,
ka = 14.7, Example 13 of Reference 5 (Surface Currents K
from Reference 14; Solid Line for E—P lane , Dashed for
H—Pla ne. Wire Grid Currents I ; ® for E-Plane , El for Near V

H-Pla ne.) V
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As an examp l e of the application of the iterative process in V

l a r ger p rob l ems , example 6 of reference 5 is reproduced here .

V .
~ 

EXAMPLE 6 OF REFERENCE 5

A flat square plate is modeled as shown in table 4. A plane

wave with norma l incidence is scattered by the wire grid. The incident
V 

E-f ield is parallel to one edge of the plate.

In example 6A, the w i r e  se gmen ts are numbered i n s t r ip s at
V 

- right angles to the incident E-field . The plate edge length is 2X.

Figure 9 indicates a bandwidth for peak efficiency corresponding to

• a dis tance of 0.3X for an object of length 2A. With segment lengths of

• O.l25A , a bandwid th of 132 includes interactions to a minimum distance
V of O.5A. Table 5 shows the convergence data . Convergence is so rapid

- 

that a smaller bandwidth would probably provide better efficiency. The

normalized b istatic cross sections in the E- and H-planes are shown in

figures 15 and 16 . The backscatter cross section a/A 2 is 220. The

pivot ratio was 20.0. The matrix fill time was 608 seconds and the

sol ution time was 138 seconds.

* 
Example 6B is identica l to example 6A except for orientation

of the incident field , wrich is pa rallel to the X—ax is. This is equiva-

lent to retaining the orientation pa rallel to the V-axis and numbering

i n strips norma l to the X—axis. The two are physically equivalent

prob l ems. The convergence data are shown in table 6. The solutions

for the two examples were the same within about 1 percent in the regions

of large current.

V 
Currents parallel to the field are shown in figures 17(a), 17 (b),

and 17 (c) for wires along the edge , next to the edge , and in the

interior of the grid. The edge wires carry a larger current as expected .

The wires next to the edge carry slightly less current than interior

wires.

V 74
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TABLE 4. D E S C R I P T I ON O F EXAMPLE 6 FROM R EFERENCE 5

TYPE:  SQUARE PLATE

DIMENS I ONS : L 2, W — 2 , R
~ 

= 0.025; A = 1 (6A, B)1
V 
A — 1.176 (6c )

SEGMENTATION : SQUARE GRID , 16 SEGMENTS PER EDGE , TOTAL OF 544

SEGMENT NUMBERING:

17 50 512

EXCITAT I ON : PLANE WAVE , NORMAL INCIDENCE , E PARALLEL TO ONE EDGE 
V
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TABLE 5. CONVERGENCE DATA FOR EXAMPLE 6A

(N = 544, M =  132)

I TER EFF BCR E IRE PRE

1 6.8 13.68 100.00 - V

2 6.5 3.60 15.47 2.39

- 3 6.3 3.29 .70

V TABLE 6. CONVERGENCE DATA FOR EXAMPLE 6B

(N = 544 , H = 132)

r 
ITER EF F BCRE IRE PRE

V

IV 

1 6.8 25.76 100.00

2 6.5 7.47 20.50 4.20

3 6.3 2.19 5.77 1.62

4 6.1 1.81 .57

TABLE 7. CONVERGENCE DATA FOR EXAMPLE 6C V

(N = 5144, M = 132)

ITER EFF BCRE IRE PRE

I 6.8 17.07 100.00 -

V 2 6.5 4.00 17.98 3.23

3 6. 3 3.89 .814
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ANGLE FROM INCIDENCE (deg)

- Fi gure 15. Normalized E—P lane B i static Cross Section
for a Wire G ridd ed Plate , Example 6A

V 
E
N~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ANGLE FROM I N C I D E N C E  (deg)

Fi gure 16. Normalized H-Plane B istatic Cross Section V

V for  a Wi re G r i dd ed P l ate , Example 6A
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Currents norma l to the E-field are zero along the centerline

wires due to symmetry. They are small everywhere compared to currents

parallel to the field , and are largest at the edges. Figure 18 shows

the approximate edge current norma l to the field. These small currents
V V 

are subject to considerable error du~ to the 1 percent convergence

criterion. The upturn at the corner’, is due to the difference in bound-

ary conditions between plates and wire grids.

Comparison of tables 5 and 6 shows that the error in X 1 
i~

V considerably larger for examp l e 6B , although the final efficiencies are

not much different. The higher initial error is due to the direction of

the E-f ie ld (and hence the currents) relative to the orientation of the

• strips used in segment numbering. Interactions between segm~ its at

V - moderate distances are largest when the segments are parallel to each

V other and norma l to the line between their centers. In example 6A , the

banded matrix includes distant interactions between parallel segments

with large currents and between co ll inear or nearl y co ll inear segments

with essentially no current. In example 6B , the oppos i te is true.

Hence , although exactly the same matrix operations are involved in the V

two cases , the excitation affects the results considerably.

* 
Example 6C differs from examp le 6A only in the wavelength.

With A equal to 1.176 , the quantity kW/2 or iiW/~ is equal to the square

root of 28. Ufimtsev (reference 15) has invest igate d p lane wave scat tering

from an infinite strip ~V Iith this parameter value for the str ip width. For

normal incidence and E across the stri p (H-polarization), he g ives the

normalized far field amplitude shown in figure 19. For E pa rallel to

the strip (E—polarization), he g ives the no m nalized far field amplitude

shown i n  f i gure 20 by a solid line . With the same normalization , the

far field in the E-plane for the wire grid is identical to figure 19

within graph reading limitations. The far field in the H—plane differed

from the strip results as shown by dots in fi gure 20.
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Convergence data for example 6C are shown in table 7. The

V pivo t ratio was 9.7. The matrix fill time was 592 seconds, and the
sol ution time was 136 seconds.

IV 
- i

E. RECOMMENDAT I ONS FOR FUTURE EFFORTS

IV

The developmen t of an EM analysis code using the GEMACS arch i tec-

ture should establish a methodology for future efforts.

The present GEMACS code is , i n esse nce , a data base manipulation tool

V 
which also supports certain types of operations on the data i nvolved .

• The cu r ren t opera t ions res u l t i n  the EM analys i s of those s truc tures and
antennas which can be modeled using the thin-wire approximation to the

EFIE wi th a sine + cosine + pulse expansion function . Additional capa-

b i l i ty in  the method of moment s areas should be added wh i ch wou ld a l l ow a
consistent analysis of the modeling requirements based on different

expansion and weighing functions.
V Add i t i o n a l l y ,  i ncorporation of the MF IE (Magnetic Field Integral

Equation) would extend the capability considerably and allow investigation

* of the SMI technique with a different type of matrix.

Besides expansion of the method of moments oriented solution tech- V

nique , diffrac tion theory methods could be inc l uded . If properly done ,
V this would support analysis using method of moments derived current

dis tributions with diffraction theory field computations.

Wi th add i t io nal sof tware for ma tr i x  man ip u la t io n , the diakoptic

• sol ution process could be i nvestigated to determ i ne its appl icability

- 
to field coupled prob l ems. This technique is already applied to distributed

V • power networks and mechanica l sys tems wi th a g rea t dea l of success.

Besides i ncreasi ng the capab i l i ty of GEMACS to so lv e a la rger  c lass
of prob le ms , there are some software improvements which could greatly

V 
reduce the size and run time of the program . These improvements would
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not correspond to ANSI FORTRAN IV ; however , the resultant code would

V s t i l l  run on a large numbe r of second and third generation computers.

The two most obvious improvements are random access I/O and dynamic core

V V • allocation . Both of these operations require software peculiar to the

V 
host machine and are generally avai lable.

~V V ~
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APPENDIX A

ANTENNA SYSTEM EFFECTIVENESS AS AFFECTED BY ENVIRONMENT

The effectiveness of an antenna system can be adversely affected by

its environment. As one example , consider the frequentl y encountered

problem in antenna siting of realistical ly includ i ng the ground effects

~ upon the antenna behavior. The antenna properties can be influenced by

the ground in essentially two ways : (1) by modif ying the antenna current

distribution through the near—field interaction ; (2) and by changing the

far-field radiation pattern from its free-space value. Even in the case

of a perfect ly conducting ground , where image theory is applicable in a

stra i gh tforwa rd way, the mutual interaction between the antenna and its

g round i mage must be allowe d for if the coupling is significant.

The antenna eng ineer is oftentimes faced with the task of designing

a system with certain characteristics in a part icul~ar ground env i ronment.

The ri gorous approach presented by Sommerfeld (796 t4) is somewhat cumber-

some and lengthy even for computer evaluation . An accurate but approx i-

mate method wh i ch surmounts the numerica l difficulties associated with

the Sommerfeld approach is used in the GEMACS program . A tested integral

equation approach for free-space antenna anal ysis was modified in a

straightforward ’ manner to prov i de an accurate and efficient numerica l

procedure for handling the antenna/half— space problem. Fresnel plane-

wave reflection coefficien ts are used to allow model ing of the ground .
C.

A. THE DIFFERENTIAL FIELD OVER GROUND

1. Vertical Source Segment

The Hertzian potential , d~i , of a vertically directed electric

current filament of strength Id . l ocated in free space above a hal f—

space of perm i tt i v i ty 
~l and conductivity a

1 
defined by z < 0 is g i ven

by (Sommerfeld , 1964)

d-
~~
(r)= ~dii (r) = ~ N(~~

)th{g
d 

+ 
~ 1 

- (Eq. A-l)
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with the time factor e suppressed throughout. The source and observation

points are denoted by ~ (x , y ,  z , or p~ , ~~~~, z) and i (x, y, z, or p,

~~~, z) respectively (see figure A-i) with

p” ~~~~~ 
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and J is the Bessel function of order n.
n

A- 2 

- ——--“ —~•--~~~ 
__._s_ _ 

—



- - - - 
-, -— - — .‘——-• . -

~ 

— -——.—•., —•- .•,— - -———- -

2. Horizon tal Source Segment

The Hertzian potential drr
h of a horizon tal differe nt i a l el ect ric

current source Id9~ pointing at an angle ~ with respect to the x axis at

coordina tes x , y ,  z above a half-space defined by z < 0 of relative

permittivity 
~E 

is given by

d
~h ~~ 

= (
~~)~~

{[
~d 

- + g
55] 

s (Eq. A-2)

+ g  ~ = d n  x + d r r  y + d ~ ~sz xh yh zh

where and g. are given by equation A—i and

g = 2 f  J (Ap ”) ~~~~~~~~~~ ~A dA
~~• 

ss o °

= cos 
~~
“ J~ CAp ”) ~~~~~~~~ cEll+UE 

A 2 dx

wi th

F _ 1 — -

= tan y y
x -x

p” = [(x_x1
2
+ (y_y _)2] 

1/2
,

S = x cos c~ + y sin ct ,

as depicted in figures A-i and A-2 , and J~ is the derivative of with

respect to its argument. It should be observed tha t the horizonta l

antenna produces not only a Hertzian potential ali gned with the current

fi l a i~ent , but a vertical component as well as a result of the half-space

interaction. Note also the change in sign of the image term g. compared

with the vertica l source .

J
A -3

- -

~ 

~~
- a ~~~~~~ •• -. ‘ -



z

~~~~~~~~~~~~~~~~~~~ 

p

P
S

-

. 

•

~

/ — Observation Point .
/ P z (x ,y,z), (p,4~, z)

Fi gure A -i . Geome try

A-k

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



-~~~~~~~~~~~~~ 

z

I’

I 

z)

Fi gure A-2. Geometry for Horizonta l Wi re

• A -5 

——-- - I T — ~=—--~ . ~~~~
- --~~~~-



For both of the above cases , an expression for the differentIal
elec tric f ie ld , d~~of the source is g iven by

d~ (i) = k2 drr (i) + VV • dn (
~
) (Eq. A-3)

where V and V • operate on the unprimed or observation coordinates , and
fr for si mpl ic i ty, the subscripts v and h wh i ch denote the source orienta-

tion are omitted . Note that three terms in the bracket of equation A-i

correspond respectively to the direct radiation field , the perfec t ly
conduc t ing half-s pace image field , and the Sommerfeld integral correc t ion

• for fini te ground conductivity. The latter two terms account for the

ground or interface-reflected contribution to the tota l field.

B. INTEGRAL EQUAT I ON

In order to determine the e lec tr ic f ie ld from a source consis ting

of an arbi trary collection of wire segments , it is necessary to in tegrate
these differen t ial f ie lds over the sou rce struc tu re

~ (i) = f k~ d~ (
~

) + vv • d~ (i) (Eq. A-k)

In order to determ ine the curr ent on a wire antenna loca ted
over a g round plane , the following integ ra l equation must be solved

s • 1 ( i ) — s  .1 ( i ) = o  (Eq. A—5)
0 0 0 0

where s and are defined in subsection s A.l and A.2.

This integ ra l equation is ri gorously correct (within the restrictions

i mposed by the thin—wire approx i mation ) for a wire-antenna located in

free-space over a ground of arbitrary permittivity and conductivity.

The resulting int egra l equat ion thus has a por t ion wh i ch in volves the
double integ ra ti on over S and A , a procedu re tha t in genera l cannot be
analy tically carried out.
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In view of this , it is advantageous to make use of reasonable

approximations to provide a method which is simpler to use and which

does not s i g n i f i c a n t l y  deg rad e the numer ica l accu racy of ou r resu l ts.

C. THE REFLECT I ON COEFFICIENT APPROX I MAT I ON

One approx i mate solution for the Sommerfeld integra l employs

asymptot ic expansio ns for the i ntegral wh i ch are valid over va ri ous

ranges of the parameter va l ues. This particular method makes use of the

method of stationary phase and double saddle—point integration . The

results from using this approach include closed form expressions for

the fields of an elementary source , electric or magnetic , useful over

various ranges of observation point location relative to the source ,

and involving the electrica l parameters of the two media.

A comprehensive survey of this genera l methodology is g iven by

Banos (1966), and the numerica l accuracy of these approximations is

examined by Siegel (1970). Siegel’ s work is especially useful i n  that

he is able to establish ranges of observation dist~~ce for which the

various expressions are val id , but unfortunately also shows that gaps

exist in general over which the approx i mations do not provide acceptable

accuracy. This is true in particular for observation points l ocated

close to the source , so that the integra l equation A-3, which requires

this close proximity of observation and source points is not amenable to

using these approx i mate expressions.

Other formulations of this general prob l em , suitable for poss ibl y

more ph ysically based approximations , have been i nvestigated . The

reader is referred to the work by Feynberg (1967), where a surface

integration over the interface induced sources is discussed , with many

other aspects of the problem , and the conference proceed i ngs ed i ted by

Wait (1969a). The latter provides a numbe r of interesting treatments ,

inc lud ing one based on the compensation theorem (Surtees , 1969) and a

comparison of several formulations for antenna impedance (Wait , 1 969b).

A-7
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In developin g an approx i mate solution to equation A-5, we chose to

proceed on a pri marily physica l basis , and fur ther to seek an approach

which is well sui ted to the in tegra l equat ion treatment deve l oped for

the free-space antenna prob lem. We have noted that the first two terms

i n the Green ’s function of equations A-i and A-2 are the direct or free-

space radiation and the perfectly conducting half—space or image radia-

t ion , respectively. The image term represents the contribution of a

specularly reflected ray from a perfectly conducting half—space , the

el ectromagnetic equ i va l ent of an optically perfect mirror in optics.

This ray optics specular component is thus rigorously correct for the

perfect conductor for wh i ch the Sommerfeld correction , g5, becomes a

zero. Further , the A—integration , as shown in equations A-I and A-2 can

be analytically performed for the image term (and the direct term as

well) so that there is no significant increase in difficu l ty in treating

an antenna located over a perfectly conducting half-space over analyzing

the same antenna i n  free—space.
The advantage of extending the ray optics approach to the finitely

conducting half-space is i mmediate ly evident. If a specularl y reflec ted

ray can be used in this case as well to account for the entire ground-

ref lected contribution (g. and g terms) to the field , then it may be

possible to largely circumvent the numerica l difficulties presented by

the Sommerfeld integral. Two prob l ems arise in accomplishing this -- one

is the determination of the appropriate ref l ection coefficient for the

half-space , and the other is that of spec i fy i ng the specular ray contri-

bution itself. These prob l ems are both brought about because the fi elds
• i nvolved are non-plane wave and the observation point can in general lie

i n the near-field of the source where the higher order terms may be of

i mportance .

Some insight may be ga i ned by view i ng the interface as a surface
• d istribution of induced sources , as disc ussed by Feynberg. The ground—

reflec ted contribution to the total field produced by a given infinites i-

mal source is then obtained from a surface i n tegrat ion over these induced

A-8
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sources. Practically speaking , this surface integration can be truncated

to include a region of only limited extent. Upon applying the princi p le

of stationary phase , this truncated region (or essential region as

denoted by Feynberg) can be shown to be of generally elliptica l shape

and centered in some sense about the specular reflection point. If the

area of this essential region is allowed in the limit to shrink to zero

centered on the specular point , only the specular ray itself will be

obtained . Thus , a ray optics approach based on a specular ray amounts

essentially to collapsing the entire interface induced source distribu-

tion to a single point from which the ground reflected field at a partic-

ular observation point to a given infinites i ma l source appears to ori g inate.

This is equival ent to the use of an image source to account for the

reflected field. The principle applies to extended sources as well , by

integrating over the corresponding specular point distribution of equiva-

lent image sources. Since this picture of the reflection process is of

course , exact for the perfectl y conducting half-space , its extension to

the finitely conducting problem with a minimum of modif icat ion appears

expedient. To obtain the functiona l dependence of the total ground

reflected field upon the geometrica l parameters , it follows that

* e q u a t i o n  A— l with the g. term only should be used . Complete specular

reflection of the field components of all orders is thus presumed (unit

magnitude reflection coefficients assumed). The effect of finite ground

conductivity consequentl y enters be l ow only via a modified reflection

c o e f f i c i e n t  which multi plies the image fields , and thus effective l y

alters the image strength.

A gain , the simplest extension beyond the perfectl y conducting casc

which wi l l  introduce the ground electrical parameters in an apparentl y

meaningful way is to be preferred . Certainl y the simp lest reflection

coefficient which could be emp l oyed would be one based on plane waves ,

the so—called Fresnel reflection coefficients. Since these are , however ,

polarization dependent , and the vertica l and horizontal field components

reflect in different ways as well , the ground reflected field must be

decomposed into the usua l TE (transverse electric) and TM (transverse

rnaq net ic modes ) .

A-9
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This is readil y accomplished by breaking the image field , or g 1
terms of equation A— k , in to e lec tr ic  f ie ld  com ponen ts l y i n g  in TM and

perpendicular to TE the vertical plane containing the source and

observation points (incidence plane) . The TM components are further

identified as a horizontal or vertica l relative to the horizontal inter—

face. Each of these field components is then multiplied by the corres-

ponding plane wave electric field reflection coefficient , using as the

angle of incidence the angle made by the specular ray connecting the

source and observation points (midpoints of the source and observation

segments , respectively) . This procedure thus neg l ects the possible

angle of incidence variation resulting from a non-zero length source

• segment for which the actual specular point distribution would be the

path on the in terfac e t raced by a s t ra i ght line drawn from the observa-

tion point and scanned over the image segment. Finally, the tota l

tangential observation point field is obtained as the sum of the direct

and ground reflected fields.

The app roach described above is a s t raigh tforward ex tension to the
E F I E 1 for free-space, or to the perfec t l y conduc t ing half-s pace. Yet ,

* as w i l l  be demonst ra ted by the nume r i ca l  resu l ts w h i c h  f o l l o w , it provides

surprisingly good results for the analysis of wire antennas , ove r a

half-space with widely varying electrica l parameters. Since the method

is based on a surface reflection coefficient at the specular point , it

is readily adapted to a horizontally stratified half-space , and to a

half-space with slowly varying properties along the interface.

For reasons of simplicity, it is assumed that the antenna is located

in free—space above a horizonta l ground with the x-y plane form i ng the

interface. Since any wire segment can be specified in terms of three

or thogona l compone nt s , it is only necessary to determine the different ial

fields due to a vertica l Hertzian source and an arbitrarily oriented

1 EF IE: Electric Field Integra l Equation

A-l U



horizontal source. The following development is limited to the vertica l

source . Subsequent sections wi l l  dea l with the arbitrarily oriented

horizontal wire segments in a similar fashion.

The reflection coefficien t approx i mation , the name by which we

characterize the modified image method outlined above , represents only

- . a simple extension to the EF IE for the case of a wire antenna located

over a perfectly conducting half space. To provide some theoretica l

justification for the reflection coefficien t approx i mation i t w i l l  be

compared with the ri gorously correct Sommerfeld integral formulation .

1 . Vertica l Filament

It wi l l  be convenient in comparing the Sommerfeld and reflection

• coeff icient approaches (and no loss of generality results) to dea l with

the d i ff erent ial f i e lds  dE which resul t fro m an in cre mental cu rr en t
filament d l l ocated on the z axis. In addition , the princ i pa l polarized

fields are simply the cylindrica l coordinate system components. Let

• i wp

Q =  4
0 d I

then , from equation A-l and A-3

* 

d I (~, z) = Q [z 
+ 

~~~ 
v 4~] (~d 

+ g. -

The tota l differential field can be written as the sum of dE D
, the

direct component (due to and dE , the reflected component (due to

- so that

d E = dE D 
+ dE R

As noted above , the reflection coefficient approx i mation invo l ves

computing dE R in terms of the perfect ground contribution ; let us

denote the latter image component by d I (due to g 1 ). Then dE R is

approx i mated by d~ 
R where

A-l 1 



di R
~~~d~~

R = r  dl t

~ 0 where 1’ i s  the Fresnel reflection coefficient matrix for the vertica lv
• source , given by

= 
Rh’

H 0 
= R”H ~~ 

+ R”
~ ~~ (Eq. A-6)

— 

- 0 R”
V

Note that I’ is a geometrica l function of the relative locations of the

source and observation points only. The superscript denotes the electric

f ield polarization relative to the incidence plane (in this case the p,

- 
- z plane) and the subscript denotes the field component relative to the

interface . While onl y the z— or vertica l field is required for the

integra l equation solution , the horizontal component is required for the

f ar f i e ld calc u la t io n , and is includ ed for comp le teness. Of course , the

differen tial electric fields must be similarly decomposed as

* 
dl R dE

H
R: p + d E R ,

-T with corresponding expressions for the other fields. Note that the

ver tica l dipole produces only z- and p- directed electric fields since

the ~~
- components of the various Vg terms are zero.

The coefficients in 1’ are the standard Fresnel plane wave reflectior
v

coefficients given by

C
E 
cos U — — sin ’ 0

L 

R” = _______________________ = - R
v / HCE COS 0 + 

~
‘ CE 

— stn 0

where the angle of incidence relative to the interface norma l is

A - l 2
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Observe tha t the p lane-wave ref lected e lec t r ic  f i e lds  are related to
the incident field in the same manner as equation A-6 , wi th I corres-
ponding to the TM wave polarization. Note that the reflection coeffic-

ients are constant for the s e l f — f i e l d s  of a sing le vertica l antenna ,

where the angle of incidence is effectivel y zero, s i nce x = x and
y = y everywhere on the antenna . For radially separated vertica l anten-

nas , this equal i ty no longer holds , however , and the variation of the

matr ix w i th  observation and source coordinates must  be taken into account.

F 2. Arbitrarily Oriented Horizontal Filament

• For the case of an arbitraril y oriented horizontal segment , the

reflection coefficient approximation requ i res that the electric field at

• a g i v e n  observation point due to a differential source (or a sing le antenna

segment) be decomposed into components which correspond to the transverse

magnetic (TM) and transverse electric (TE) polarizations of a plane wave

relative to the incidence plane . It is thus necessary in general to find
* 

• 
the three orthogona l components of the field , two of which lie in the

plane of incidence (for a non-zero length segment , the source point is

taken to be the segment center), and one which is orthogona l to it. The

two in-plane field components are the radially and verticall y (or z)

directed parts of the field , while the orthogona l component is the azi—

muthally directed part , relative to a cylindrica l coord i nate system on

whose vertical or z-axis the source is l ocated . Since the total field

is obtained as the summation of differential fields due to a distribution

of sources which will not in general have a common incidence plane , it is

nec3ssary to perform the field integration in a convenient , absolute

coord i nate system , such as cartesian , or cy lindrica l , with respect to

which the source distribution is specified.

L 

A - l 3

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



I t is consequently expedient to express the differential

field direc tions relative to the source-incidence plane , and to then

transform this field into components relative to the absolute reference

system. Let the in—plane unit vectors which are horizonta l and vertica l

relative to the interface be s,
~ 

and z respect ively and let the orthogonal

uni t vec tor to the p lane be s~ . The three field components at observa-

tion point x ,y,z (or p, 4, z) due to a source at x , y ,  z (or p , ~~, z~)
can be ex p ressed as

dl de x +de y + d e  z = d e  p + d e  + + d e  zx y z p z

= de , 5, + de1 s~ + de z
where

S cos ~~
“ s in  •“ 0

• 
~1 

= 

~~~ ~l” cos ~~~ 0

0 0 1 z
(Eq. A-7)

* 
cos y s i n y  0 p -•

= -sin y cos y 0

0 0 1 z

~~ ~~~~~~~~~ ~~ ;ui

• y = sin 4” cos 4” 0 S
1

0 0 1

P cos y -sin y 0 1;
• sin y cos y 0

z 0 0 1 z
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and
- ‘‘ 4 ” = tan

1 

(~
i..)

y ~“ - 4

Note that ~~“ is the angular coordinate of the observation point relative
• 

to the so u rce , and y is the angular separation between the inc i dence
• plane and a radial vector through the observation point. For the special

- case of the vertical source de is zero.

As a final point concerning the reference directions for the

electric field ca l culation , it is pertinent to mention that the direct ,

• 

•

. im age and Sommerfeld ter m s of the Gree n ’s function produce only long i-

tudi nal and radial d i f fe rent ial f i e l ds  rela t ive to the so ur ce d ire c t ion .

• This is due to the azimutha l independence of a filamentary source and

its resultant fields. Thus the differential field is most conven i ently

found for an arbitrarily directed source in the source—oriented long i-
tudi nal and radial direc ti ons , and then subsequentl y transformed into

* , the appropriate components required for the integra l equation calcula-

tion . For computer imp l ementation it is generally most convenient to

arrange the overall numerica l procedure entirely in terms of cartesian

components. In the following discussion , it wi l l  be more illuminating

• in some instances to use the s,,, s and z directions in demonstrating the

• application of the reflection coefficient approximation .

Let the radial and longitudinal electric fields referred to

. the source (or image) oriented cylindrica l coordinate system (p, 6, 9~,)

be deno ted by dE p and dE~ respectively. These fields are obtainable

f rom

• 
- dE = dE p + dE

p
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dl = dE p + dE
9. 

9.

= P I (9.1d 9.’ 
{[I 

+ 

~~~~ 

.
~.;7] g 9. (Eq. A-8)

~~~~~~ 
~~~~~

for a segment of length ~ where g is the Gr een ’s function e ikr ir with r

the distance from the observation point to the source (or image) . In the

so u rce centered sys tem

r = / ~~~+ 9 .
Z

with p, 6, and 9. the observation point coord i nates. As prev i ousl y no ted ,

i t is possible to analytically eva l uate the dE and dE 9. 
terms of equation

A-8 for a cos i ne or sine current variation , as wel l  as the dE com ponen t

for a current independent of 9 .

We can now transform from the p and 9. field components to the

car tes ia n com ponen ts usin g

x s in a s in 6 s in a cos 6 cos
y - cos a s in 6 —cos a cos 6 s i n a I  6

z cos 6 — si n ô 0 J 9.

where 6 is measured from the vert ical. Continuing , we then p roceed
to the incidence-plane image field components which are expressible in

• terms of the unit vector s,, and s~ via the transformation g iven by

equation A-7. The requ i red image field components (which we denote wit h

a superscript I and which come from equation A-8 with g g. relative

to the incidence plane) can be put in the form

A-l6 
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~

•• - •

- - ••~~~~~~•

dE 1
1 cos ~~

“ s i n  ~~
“ 0 sin a sin 6 sin a cos 6 cos a dE ’

- - dE 1 j. = —sin 4~” cos 4” 0 -cos a sin 6 -cos a cos 6 sin a dE~

• 
dE ’ 0 0 1 cos 6 -sin 6 0 dE ’

where

~~“ = tan~~ (~:~ )

6 = tan~~ 
[(x_x

_) 
s i n a i -  (Y_ Y )c9~ cJ

— l I i + cot a tan 4”~tan I
L sin a (x—x ) (z—z

p = [(x_x1
2 

+ (y-y )
2 

+ (z-z )
2 

- 9.2]l /2

9. = (x-xi cos a + (y-y ) sin a

Note tha t the direct field components and the image components as obtained

* 
from equation A-8 differ only because z. is the positive for the former ,

and negative for the latter.

Since the dE~ component of el ec t r ic f i e l d  i s zero , the above

si mp l i f i e s  to

dE ’, = sin 6 s i n  (a—4”) dE ’ + cos (a— ~”)dE~

dE~ = -sin 6 cos (a— ~”) dE 1
~ + sin (a-~”)dE~

dE
1 

= cos 6 dE
t

z p

Upon multip lication _of the E,’ , E~ an d E 1 components by the reflection

coefficient matrix 1’ , where

A -17
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II •• * 1
r - = R ~~s , s, + R ~~s s + R z z

I’ ‘ L J V

whe re 
R = 

cos 0 - 

~
‘
~E 

- s in1 0

H cos O +/~ - s in2 O
o E

we obtain the desired reflected field components , w h i c h  we denote by

superscript R ,

dE~ = RH ~
sin 6 sin (a-~”) dE ’ + cos (a-~”) dEi]

dE R 
= R

H [s
in 6 cos (a-~”) dE 1 + si n (a-~~”) dE

~1

dE = R  cos 6d E
z V P

As the fina l step in the procedure of approx i mating equation

A— 5, add the direc t and ref lec ted f i e l ds  ( t ra nsformed back to car tes i an
• • components) due to the given source segment , evaluated at an observation

* 
point at another ar:e’ra seç~ ent , and take the dot product with the obser—

vation segment tangent vector.

(1) Pass a vertica l plane through the center of the source

segment and the observation point. (Plane of Incidence)

(2) Determ i ne the angle of incidence at the specular point .

(3) Decompose the electric field into components parallel

and perpendicular to the plane of incidence.

(4) Apply the appropriate reflection coefficient s to each

component.

(5) Sum the tangential components of the direct and reflected

electric field at the observation point.
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• 0. RESULTS US I NG THE REFLECTION COEFFICIENT METHOD

The most desirable test of a numerica l method is comparison with

experimental data , and lacking that , with results obta i ned usin g other

i ndependent analyt i ca l techniques . Such comparisons are presented be l ow
• to validate the reflection coefficient method .

I n figure A-3 is shown the input resistance of a vertica l half-wave

di pole as a function of height over a lossy ground. The comparison with

Sommerfeld integral results points out that si gnificant discrepancies

occur only when the dipole is very close to the ground and that even

when the tip is touching, an error of less than 10 percen t is encoun-

-• tered . The inpu t resistance of a 0.1 A horizontal dipole above a dielec-

• tric half—space is shown as a function of height above ground in figure

A—k . Comparison with the scant independent data ind i cates close agreement.

A comparison with experimental da ta for a purely dielectric ground is

inc l uded in figure A-5. The plot pertains to the input resistance of a

horizon tal half—wave dipole as a function of its height above ground.

Since the antenna radiation pattern is also of great interest , we include

in figure A-6 the radiation patterns of a monopole over a dielectric

ground. The results are compared to those presented in Col l in and

Zucker (1969) wherein a current distribution on the monopole was assumed .

For comparison , a Sommerfeld integra l calculation is also provided .

The charac ter i s ti cs of antenna arrays over lossy gro un d ca n be

easil y and accurately established using the appro>’imate approach.

Figure A-7 contains plots of the input resistance and radiation patterns

of a parasitic array of half-wave dipoles. The discrepanc ies between

two i ndependent approaches are noticeable only for h/A < 0.35. The same

arra y is considered with variable spacing in figure A-8 where a comparison

with the Sommerfeld integra l and perfect ground results is included. To

emphasize the usefulness of the method , the radiation patterns of a log

— periodic antenna over various grounds are shown in fi gure A-9 . Wit h a

know l edge of the free-space or perfect ground pattern , one must appreciate

that an accurate prediction of the pattern over an arbitrary ground

would i ndeed be difficult. Furthermore , for the case shown , the eva l ua-

tion of the Sommerfeld integrals would be not only difficult , but time

consuming and expensive.
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MFIRIC

BASE UNITS;
Sl~~Y!!!b0I -

length metre m
mass kilogram kg
time secon d a
electric cur rent ampere A
t hermod ynamic temperature kelvin K

• • amount of substance mole mol -.

luminous intensity candela cd

SUPPLa4ENTAZY UNITS:
plane angle radian rad

• 
solid angle steradian

DERIVED UNITS:
Acce leration metre per second squared - • • mis

activity (o f a radioactive sourc e) disintegration per second - • (disin tegration)! s
angu lar acceleration radian per second squared • • • radis

angu lar veloc ity radian per second • • •  radls

area squa re metre • . .  in

dens ity kilogram per cubic metre • • kg/rn

electric capacitance fara d F A.sIV
electrical conductance siemens S A/V
electric field strength volt per metre • • •  

Vim
• electric inductance henry H V.a/A

electric potential difference volt V W/A
electric resistance ohm V/A
electromotive force vol t V WIA
energy jou le I N.m
entropy joule per kelvin • - .  JIK

• force newton N kg.mls
frequency hert z Hz (cycle)/s
illuminance lux lx lm!m
luminance candela per square metre • •  • cd/rn
luminous flux lumen Im cd .sr
magnetic field strength ampere per metre • • • A/m
magnetic flux weber Wb V.s
magnetic flux density teals T Wblm
magnetomot ive force ampere A
powe r w att W J/s
pressure pasca l Pa N/rn
quantity of electricity couhmb C A.s
quantity of heat joule J N.m
radiant intensity wa tt per st erad ,an • •  

Wlsr
spec ific heat j o ul e per kil o gram-kelvin • - J/kg .K
stress pascal Pa N/rn
t hermal conductivity watt per met r,~-ke lvi n W/m.K
ve locity metre per sec ond - - • rn/s
viscosit y, dynamic pascal-s econd • -  Pa.s
viscosit y, kinematic squa re melts per second • •  - rn/s
vo ltage volt V W/A
vo lume cubic metre . .  m
wavenum ber reciprocal metr .’ - •  (wave) lm
work joule I N.m

SI PREFIXES:

Mult~p lo.aIic.n Facto rs Pref ix SI Symb ol

1 000 000 11(1/1(100 1011 t. ’ra T
1 000 000 (JO/I - - 10’ giga (;

1 000 000 l0~ mega M
1 000 = 10 ’ kilo k

100 10’ hecto h
10 10’ deki di

0 1  1 0 ’  dad ’ d
0.01 1 0 ’  ,Mfl11 I:

(1 001 ~
- 10 ‘ milli in

0 000 001 • 1W ‘ mlcrr,
0 000 000 001 - 10~ nafl o 0

0.00/1 (1(U) (KU) (101 — 1W ‘ l,lU, p
(1.000 004) 000 Q(XI 001 1W ‘‘ famto f

• 0.0(1/) 000 000 000 00/) 001 10 “ i,It t,

Ti, be avoi ded where poss ible.
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